scholarly journals Degradation of hop latent viroid during anaerobic digestion of infected hop harvest residues

Author(s):  
Michael Helmut Hagemann ◽  
Ute Born ◽  
Elke Sprich ◽  
Luitgardis Seigner ◽  
Hans Oechsner ◽  
...  

AbstractThe citrus bark cracking viroid (CBCVd) was identified as causal agent for a severe stunting disease in hops. Viroids are highly stable parasitic RNAs, which can be easily transmitted by agricultural practices. Since CBCVd has recently been detected in two European countries a growing concern is that this pathogen will further spread and thereby threaten the European hop production. Biogas fermentation is used to sanitize hop harvest residues infected with pathogenic fungi. Consequently, the aim of this study was to test if biogas fermentation can contribute to viroid degradation at mesophilic (40 °C) and thermophilic (50 °C) conditions. Therefore, a duplex reverse transcription real-time PCR analysis was developed for CBCVd and HLVd detection in biogas fermentation residues. The non-pathogenic hop latent viroid (HLVd) was used as viroid model for the pathogenic CBCVd. The fermentation trials showed that HLVd was significantly degraded after 30 days at mesophilic or after 5 days at thermophilic conditions, respectively. However, sequencing revealed that HLVd was not fully degraded even after 90 days. The incubation of hop harvest residues at different temperatures between 20 and 70 °C showed that 70 °C led to a significant HLVd degradation after 1 day. In conclusion, we suggest combining 70 °C pretreatment and thermophilic fermentation for efficient viroid decontamination.

Reproduction ◽  
2006 ◽  
Vol 132 (3) ◽  
pp. 519-526 ◽  
Author(s):  
Roberto Puglisi ◽  
Roberta Vanni ◽  
Andrea Galli ◽  
Donatella Balduzzi ◽  
Katia Parati ◽  
...  

The methodologies used for cytometric sorting of fresh spermatozoa never allowed a clear resolution of sexual chromosomes of frozen–thawed semen. To devise a novel method for the production of bovine predefined sexed embryos using frozen–thawed semen, sorting efficiency of different protocols was studied using a new quantitative real-time PCR method to verify the purity of sexed semen. To this aim, after Percoll separation, frozen–thawed samples were stained at different temperatures and concentrations of Hoechst 33342 using a short-incubation time. The concentration of Hoechst 33342 of 500 μg/ml at a temperature of 37 °C provided good and stable fluorescence signals. Preventing the sperm clustering by adding 0.6% BSA in the 90% Percoll fraction led to X-bearing sperms purity of 91±2%. Thereafter, sorted sperms were used for in vitro fertilisation (IVF). Despite the lower cleavage rates reported in the sorted groups when compared with the control groups (40 vs 48%, P<0.01), blastocyst formation in the sorted and control groups was not different (27 vs 24% of the cleaved respectively). The PCR analysis of 30 blastocysts confirmed 26 embryos to be correctly sexed (87%). Transfer of two embryos per recipient into six synchronised heifers resulted in four pregnancies. Two abortions occurred at day 60, while two pregnancies went to term delivering two female calves. In conclusion, high purity and repeatabilityof sorting was obtained with frozen–thawed bull semen that was subsequently used for IVF giving rise toviable embryos and offspring. In addition, real-time PCR revealed to be an optimal support for these studies, providing a rapid and reliable estimation of flowcytometric efficiency.


2006 ◽  
Vol 4 (s1) ◽  
pp. 82-82
Author(s):  
K. Floros ◽  
H. Thomadaki ◽  
S. Pavlovic ◽  
M. Talieri ◽  
M. Colovic ◽  
...  

2021 ◽  
Vol 70 (9) ◽  
Author(s):  
Berta Fidalgo ◽  
Elisa Rubio ◽  
Victor Pastor ◽  
Marta Parera ◽  
Clara Ballesté-Delpierre ◽  
...  

Introduction. The identification of enteropathogens is critical for the clinical management of patients with suspected gastrointestinal infection. The FLOW multiplex PCR system (FMPS) is a semi-automated platform (FLOW System, Roche) for multiplex real-time PCR analysis. Hypothesis/Gap Statement. FMPS has greater sensitivity for the detection of enteric pathogens than standard methods such as culture, biochemical identification, immunochromatography or microscopic examination. Aim.The diagnostic performance of the FMPS was evaluated and compared to that of traditional microbiological procedures. Methodology. A total of 10 659 samples were collected and analysed over a period of 7 years. From 2013 to 2018 (every July to September), samples were processed using standard microbiological culture methods. In 2019, the FMPS was implemented using real-time PCR to detect the following enteropathogens: Shigella spp., Salmonella spp., Campylobacter spp., Giardia intestinalis, Entamoeba histolytica, Blastocystis hominis, Cryptosporidum spp., Dientamoeba fragilis, adenovirus, norovirus and rotavirus. Standard microbiological culture methods (2013–2018) included stool culture, microscopy and immunochromatography. Results. A total of 1078 stool samples were analysed prospectively using the FMPS from July to September (2019): bacterial, parasitic and viral pathogens were identified in 15.3, 9.71 and 5.29 % of cases, respectively. During the same period of 6 years (2013–2018), the proportion of positive identifications using standard microbiological methods from 2013 to 2018 was significantly lower. A major significant recovery improvement was observed for all bacteria species tested: Shigella spp./enteroinvasive Escherichia coli (EIEC) (P <0.05), Salmonella spp. (P <0.05) and Campylobacter spp. (P <0.05). Marked differences were also observed for the parasites G. intestinalis, Cryptosporidium spp. and D. fragilis. Conclusion. These results support the value of multiplex real-time PCR analysis for the detection of enteric pathogens in laboratory diagnosis with outstanding performance in identifying labile micro-organisms. The identification of unsuspected micro-organisms for less specific clinical presentations may also impact on clinical practice and help optimize patient management.


2003 ◽  
Vol 35 (5) ◽  
pp. 454-459 ◽  
Author(s):  
Hakan Savli ◽  
Sema Sirma ◽  
Balint Nagy ◽  
Melih Aktan ◽  
Guncag Dincol ◽  
...  
Keyword(s):  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kyung Hoon Kim ◽  
MinHo Yang ◽  
Younseong Song ◽  
Chi Hyun Kim ◽  
Young Mee Jung ◽  
...  

AbstractA bacteria-capturing platform is a critical function of accurate, quantitative, and sensitive identification of bacterial pathogens for potential usage in the detection of foodborne diseases. Despite the development of various nanostructures and their surface chemical modification strategies, relative to the principal physical contact propagation of bacterial infections, mechanically robust and nanostructured platforms that are available to capture bacteria remain a significant problem. Here, a three-dimensional (3D) hierarchically structured polyaniline nanoweb film is developed for the efficient capture of bacterial pathogens by hand-touching. This unique nanostructure ensures sufficient mechanical resistance when exposed to compression and shear forces and facilitates the 3D interfacial interactions between bacterial extracellular organelles and polyaniline surfaces. The bacterial pathogens (Escherichia coli O157:H7, Salmonella enteritidis, and Staphylococcus aureus) are efficiently captured through finger-touching, as verified by the polymerase chain reaction (PCR) analysis. Moreover, the real-time PCR results of finger-touched cells on a 3D nanoweb film show a highly sensitive detection of bacteria, which is similar to those of the real-time PCR using cultured cells without the capturing step without any interfering of fluorescence signal and structural deformation during thermal cycling. Graphic Abstract


Sign in / Sign up

Export Citation Format

Share Document