scholarly journals Ambient ozone over mid-Brahmaputra Valley, India: effects of local emissions and atmospheric transport on the photostationary state

2021 ◽  
Vol 193 (12) ◽  
Author(s):  
Warisha Rahman ◽  
Gufran Beig ◽  
Nivedita Barman ◽  
Philip K. Hopke ◽  
Raza R. Hoque
1986 ◽  
Vol 18 (2) ◽  
pp. 47-57 ◽  
Author(s):  
W. Thomas

Plant and soil samples from 4 locations in Spitsbergen (Norway) were analysed for major ions, heavy metals, polyaromatic hydrocarbons (PAH) and chlorinated pesticides. The results indicate that trace amounts of these substance groups result from a number of different sources, namely from subsoil material, local emissions and long range atmospheric transport. A comparison of inorganic and organic micropollutant concentrations allows a distinction between trace substance uptake from soil or air. The correlation of plant and air concentrations makes it obvious that elevated accumulation rates of heavy metals in plants result from low level transport of particles. PAH are very effectively retained by species with large surface areas and represent particle concentrations in the air. Benzohexachloride in plants results from precipitation water rather than from direct uptake of gaseous traces.


1996 ◽  
Vol 33 (4-5) ◽  
pp. 259-265
Author(s):  
Gerald J. Keeler ◽  
Nicola Pirrone

A hybrid receptor-deposition (HRD) modeling approach was used to determine the spatial and temporal variation in the ambient concentration and dry deposition flux of trace elements on fine (< 2.5 mm) and coarse (> 2.5 mm) particulate matter over Lake Erie. Upper-air observations from the National Weather Service (NWS) and ambient concentrations measured at two sampling sites downwind of major emission sources in the Lake Erie basin were input to the model. An evaluation of the deposition flux of size-segregated trace elements to the lake during the over-water transport was performed. The average total (fine + coarse) deposition flux was 9.6 ng/m2-h for V, 70 ng/m2-h for Mn, 3.2 ng/m2-h for As, 4.2 ng/m2-h for Se, 10 ng/m2-h for Cd, and 43.3 ng/m2-h for Pb.


Author(s):  
Yeny A. Tobon ◽  
Danielle El Hajj ◽  
Samantha Seng ◽  
Ferdaous Bengrad ◽  
Myriam Moreau ◽  
...  

Sodium chloride (NaCl) is the main constituent of sea-salt aerosols. During atmospheric transport, sea-salt aerosols can interact with gases and other particles including secondary aerosols containing ammonium sulfate ((NH4)2SO4). This...


2021 ◽  
pp. 1-11
Author(s):  
Karishma Kashyap ◽  
Rasika M. Bhagwat ◽  
Sofia Banu

Abstract Khasi mandarin (Citrus reticulata Blanco) is a commercial mandarin variety grown in northeast India and one of the 175 Indian food items included in the global first food atlas. The cultivated plantations of Khasi mandarin grown prominently in the lower Brahmaputra valley of Assam, northeast India, have been genetically eroded. The lack in the efforts for conservation of genetic variability in this mandarin variety prompted diversity analysis of Khasi mandarin germplasm across the region. Thus, the study aimed to investigate genetic diversity and partitioning of the genetic variations within and among 92 populations of Khasi mandarin collected from 10 cultivated sites in Kamrup and Kamrup (M) districts of Assam, India, using Inter-Simple Sequence Repeat (ISSR) markers. The amplification of genomic DNA with 17 ISSR primers yielded 216 scorable DNA amplicons of which 177 (81.94%) were polymorphic. The average polymorphism information content was 0.39 per primer. The total genetic diversity (HT = 0.28 ± 0.03) was close to the diversity within the population (HS = 0.20 ± 0.01). A high mean coefficient of gene differentiation (GST = 0.29) reflected a high level of gene flow (Nm = 1.22), indicating high genetic differentiation among the populations. Analysis of Molecular Variance (AMOVA) showed 78% of intra-population differentiation, 21% among the population and 1% among the districts. The obtained results indicate the existence of a high level of genetic diversity in the cultivated Khasi mandarin populations, indicating the need for preservation of each existing population to revive the dying out orchards in northeast India.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 467
Author(s):  
Rocío Baró ◽  
Christian Maurer ◽  
Jerome Brioude ◽  
Delia Arnold ◽  
Marcus Hirtl

This paper demonstrates the environmental impacts of the wildfires occurring at the beginning of April 2020 in and around the highly contaminated Chernobyl Exclusion Zone (CEZ). Due to the critical fire location, concerns arose about secondary radioactive contamination potentially spreading over Europe. The impact of the fire was assessed through the evaluation of fire plume dispersion and re-suspension of the radionuclide Cs-137, whereas, to assess the smoke plume effect, a WRF-Chem simulation was performed and compared to Tropospheric Monitoring Instrument (TROPOMI) satellite columns. The results show agreement of the simulated black carbon and carbon monoxide plumes with the plumes as observed by TROPOMI, where pollutants were also transported to Belarus. From an air quality and health perspective, the wildfires caused extremely bad air quality over Kiev, where the WRF-Chem model simulated mean values of PM2.5 up to 300 µg/m3 (during the first fire outbreak) over CEZ. The re-suspension of Cs-137 was assessed by a Bayesian inverse modelling approach using FLEXPART as the atmospheric transport model and Ukraine observations, yielding a total release of 600 ± 200 GBq. The increase in both smoke and Cs-137 emissions was only well correlated on the 9 April, likely related to a shift of the focus area of the fires. From a radiological point of view even the highest Cs-137 values (average measured or modelled air concentrations and modelled deposition) at the measurement site closest to the Chernobyl Nuclear Power Plant, i.e., Kiev, posed no health risk.


Sign in / Sign up

Export Citation Format

Share Document