scholarly journals Magnetic properties of iron oxide nanoparticles with a DMSA-modified surface

2021 ◽  
Vol 242 (1) ◽  
Author(s):  
K. Winiarczyk ◽  
W. Gac ◽  
M. Góral-Kowalczyk ◽  
Z. Surowiec

AbstractThe magnetic properties of magnetite nanoparticles (Fe3O4 NPs) strongly depend on their chemical and physical parameters, which can be regulated by a controlled synthesis process. To improve the quality of the obtained nanoparticles, their surface is often modified with organic compounds (from the group of surfactants, sugars, proteins, or organic acid). In this study, we synthesized magnetite nanoparticles with a surface modified with the organic compound DMSA. Then, the nanocrystallites were characterized in terms of structure and morphology. To investigate the role of DMSA and to understand the adsorption mechanism, FTIR measurements were carried out. Using Mössbauer spectroscopy, we investigated temperature-induced changes in the magnetic properties of prepared samples. The spectra were recorded in a wide temperature range (from 4 K to 390 K) for two types of samples: powders and ferrofluids with various concentrations. In the case of powder samples, the superparamagnetic doublet appeared at room temperature. For magnetic suspensions, the spectra were more complicated. They consisted of superposition of asymmetrically broadened sextets and doublets, which was caused by the occurrence of long-range dipole-dipole interactions. These interactions affected the magnetic properties of the material and increased the blocking temperature. Additionally, the magnetic hysteresis and zero field cooling-field cooling (ZFC/FC) curves were measured with the use of a vibrating sample magnetometer.

Crystals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 50 ◽  
Author(s):  
Sergio David Villalobos Mendoza ◽  
José Trinidad Holguín Momaca ◽  
José Trinidad Elizalde Galindo ◽  
Diana María Carrillo Flores ◽  
Sion Federico Olive Méndez ◽  
...  

Fe-doped LiTaO3 thin films with a low and high Fe concentration (labeled as LTO:Fe-LC and LTO:Fe-HC, respectively) were deposited by magnetron sputtering from two home-made targets. The dopant directly influenced the crystalline structure of the LiTaO3 thin films, causing the contraction of the unit cell, which was related to the incorporation of Fe3+ ions into the LiTaO3 structure, which occupied Li positions. This substitution was corroborated by Raman spectroscopy, where the bands associated with Li-O bonds broadened in the spectra of the samples. Magnetic hysteresis loops, zero-field cooling curves, and field cooling curves were obtained in a vibrating sample magnetometer. The LTO:Fe-HC sample demonstrates superparamagnetic behavior with a blocking temperature of 100 K, mainly associated with the appearance of Fe clusters in the thin film. On the other hand, a room temperature ferromagnetic behavior was found in the LTO:Fe-LC layer where saturation magnetization (3.80 kAm−1) and magnetic coercivities were not temperature-dependent. Moreover, the crystallinity and morphology of the samples were evaluated by X-ray diffraction and scanning electron microscopy, respectively.


2007 ◽  
Vol 22 (8) ◽  
pp. 2081-2086 ◽  
Author(s):  
H-Y. Guo ◽  
J.I.L. Chen ◽  
Z-G. Ye ◽  
A.S. Arrott

The ferroelectric and magnetic properties of the perovskite solid solution, (1 − x)LaCrO3–xBiCrO3, have been investigated. While pure LaCrO3 does not show ferroelectric hysteresis even at 77 K, the solid solution of La1−xBixCrO3 with x = 0.1, 0.2, 0.3, and 0.35 displays ferroelectric hysteresis, with the remanent polarization increasing with the increase of the Bi3+ content. Using a superconducting quantum interference device, the magnetization was measured versus temperature under field cooling (FC) and zero field cooling (ZFC) conditions. Magnetic hysteresis has been found in La1−xBixCrO3 (0.1 ⩽ x ⩽ 0.3) below the Néel temperature, TN. With the increase of Bi3+ content, TN decreases, while the magnetization below TN is enhanced. While the ferroelectric and magnetic properties could be due to different origins, the Bi substitution results in both ferroelectric and magnetic enhancements in the (1 − x)LaCrO3–xBiCrO3 solid solutions.


1999 ◽  
Vol 581 ◽  
Author(s):  
Xiangcheng Suns ◽  
M. Jose Yacamana ◽  
F. Morales

ABSTRACTTwo kinds of different nickel nanoparticles with distinct morphological properties, Ni(C) and Ni(O), are studied. Magnetization measurements for the assembly of two kinds of Ni nanoparticles show, a larger coercivity and remanence as well as the deviation between the zero field cooling (ZFC) and the field cooling (FC) magnetization have been observed in the Ni(O) particles. This deviation may be explained as a typical cluster glass-like behavior due to ferromagnetic interaction among the assembly of Ni(O) particles. However, Ni(C) particles exhibit superparamagnetism at room temperature. The average blocking temperature (TB) is determined to around 115K. We also observe gradual decrease in saturation magnetization, which is attributed to the nanocrystalline nature of the encapsulated particles.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
M. M. Eltabey ◽  
A. M. Massoud ◽  
Cosmin Radu

Magnesium substituted nickel cadmium ferrite nanoparticles MgxNi0.6−xCd0.4Fe2O4(fromx= 0 to 0.6 with step 0.1) have been synthesized by the chemical coprecipitation route. X-ray diffraction (XRD) and infrared spectroscopy (FTIR) revealed that the obtained powders have a single phase of cubic spinel structure. The crystallite sizes calculated from XRD data have been confirmed using transmission electron microscopy (TEM) showing that the powders are consisting of nanosized grains with an average size range 5–1.5 nm. Magnetic hysteresis loops were traced at 6.5 K as well as at room temperature using VSM. It was found that, due to the Mg2+-ions substitution, the values of saturation magnetizationMsfor the investigated samples were decreased, whereas the coercive fieldHcincreased. Both zero field cooling (ZFC) and field cooling (FC) curves are measured in the temperature range (6.5–350 K) and the values of blocking temperatureTBwere determined. No considerable variation in the values ofTBwas observed with increasing Mg-content, whereas the values of the effective anisotropy constantKeffwere increased.


2018 ◽  
Vol 14 (4) ◽  
pp. 663-675
Author(s):  
R. Masrour ◽  
M. Ben Ali ◽  
H. El Moussaoui ◽  
Mohamed Hamedoun ◽  
A. Benyoussef ◽  
...  

Purpose The purpose of this paper is to synthesize the manganese ferrite nanoparticle MnFe2O4 and to investigate the structure, size and to study the electronic and the magnetic properties of MnFe2O4 nanoparticles. Design/methodology/approach The co-precipitation method is used to synthesize the MnFe2O4. The structure and size were investigated by X-ray diffraction. The superconducting quantum interference device is used to determine the some magnetic ground. From theoretical investigation point of view self-consistent ab initio calculations, based on density functional theory approach using full potential linear augmented plane wave method, were performed to investigate both electronic and magnetic properties of the MnFe2O4. The high temperatures series expansion (HTSE) is used to study the magnetic properties of MnFe2O4. Findings The saturation magnetization, the coercivity and the transition temperature varied between 21-43 emu/g, 20-50 Oe and 571-630 K, respectively, have been studied. The gap energy of MnFe2O4 has been deduced. The critical temperature and the critical exponent have been obtained using HTSEs. Originality/value In the present work, the authors study the electronic and magnetic properties of MnFe2O4. The results obtained by the experiment and by ab initio calculations were used in HTSE as input to deduce other physical parameters.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
O. I. Medvedeva ◽  
S. S. Kambulova ◽  
O. V. Bondar ◽  
A. R. Gataulina ◽  
N. A. Ulakhovich ◽  
...  

A series of cobalt (Co) and its oxides based nanoparticles were synthesized by using hyperbranched polyester polyol Boltorn H20 as a platform and sodium borohydride as a reducing agent. UV, FT-IR, XRD, NTA, and TEM methods were employed to obtain physicochemical characteristics of the products. The average diameter of Co nanoparticles was approximately 8.2±3.4 nm. Their magnetic properties, including hysteresis loop, field-cooled, and zero field-cooled curves were investigated. The nanoparticles exhibit superparamagnetism at room temperature, accompanied by magnetic hysteresis below the blocking temperature.


2017 ◽  
Vol 727 ◽  
pp. 403-409
Author(s):  
Yi Hao Shen ◽  
Qing Rong Yao ◽  
Peng Cheng Yang ◽  
Jian Qiu Deng ◽  
Zong Min Wang

Effect of Na doping on the structural and magnetic properties of La1-xNaxCoO3 (0≤x≤0.4) nanopowder samples synthesized by sol-gel method have been investigated. Rietveld crystal structure refinement of the X-ray diffraction data shows that La1−xNaxCoO3 (x≤0.3) crystallizes in the rhombohedral structure with space group . The lattice parameters decrease and the crystallite sizes increase with the increase of x. For the sample with x=0.4, a secondary hexagonal phase NaCo2O4 was observed. The zero field cooling (ZFC) and field cooling (FC) curve of the samples (x≤0.3) exhibit a paramagnetic-ferromagnetic transition with decreasing temperature.


2001 ◽  
Author(s):  
D. Kumar ◽  
J. Sankar ◽  
J. Narayan ◽  
A. Kvit

Abstract Presently a wide spread of research activities is pursued in the area of theoretical, computational and experimental aspects of vibration studies in laminated composite structures with embedded or surface bonded smart layers in order to improve the performance of components in aerospace, mechanical, robotics, and electronic equipments. The key to the successful fabrication of these components with improved properties is the development of smart materials by materials engineering and understanding the fundamentals of materials science. It is in this context that we have developed a novel smart thin film processing method based upon pulsed laser deposition to process nanocrystalline materials with accurate size and interface control with improved mechanical and magnetic properties. Using this method, single domain nanocrystalline Fe and Ni particles in 5–10 nm size range embedded in amorphous as well as crystalline alumina have been produced. By controlling the size distribution in confined layers, it was possible to tune the magnetic properties from superparamagnetic to ferromagnetic in a controlled way. Magnetization measurements of these thin film composites as function of field and temperature were carried out using a superconducting quantum interference device (SQUID) magnetometer. Magnetic hysteresis characteristics below the blocking temperature are consistent with single-domain behavior. Mechanical properties were measured using nano-indentation measurements. The hardness of the Fe and Ni-Al2O3 nanocomposites was found to vary strongly with the size do Fe and Ni nanodots in the alumina matrix. For example, the hardness of Fe-Al2O3 system increased from 15 GPa to 28 GPa when the size of Fe dots in alumina was increased from 5 nm to 9 nm. It is envisioned that this types of smart films can be used in magnetic recording, ferrofluid technology, magnetocaloric refrigeration, biomedicine, biotechnology, aerospace applications where hard and wear-resistant coatings are also very important for its survival.


2000 ◽  
Vol 614 ◽  
Author(s):  
Hao Wang ◽  
S.P. Wong ◽  
W.Y. Cheung ◽  
N. Ke ◽  
M.F. Chiah ◽  
...  

ABSTRACTNanocomposite Co-C thin films of about 15 nm thick were prepared by pulsed filtered vacuum arc deposition. The films were characterized by x-ray photoelectron spectroscopy, non-Rutherford backscattering spectrometry, x-ray diffraction, magnetic force microscopy and magnetic measurements. The as-deposited films were amorphous. After annealing at 350°C for one hour in vacuum (< 10−3 Pa), the films were found to consist of nanocrystalline Co grains encapsulated in carbon. The superparamagnetism of the annealed Co36C64 film was demonstrated by the measurement of DC susceptibility and magnetic hysteresis using a SQUID magnetometer. The superparamagnetic relaxation blocking temperature was marked to be about 12K by the peak of the zero-field-cooled magnetization under a field of 100 Oe. The magnetic properties of these annealed granular Co-C films transform from superparamagnetism to ferromagnetism when the Co concentration increases.


2002 ◽  
Vol 746 ◽  
Author(s):  
Fabio C. Fonseca ◽  
Gerardo F. Goya ◽  
Renato F. Jardim ◽  
Reginaldo Muccillo ◽  
Neftalí L. V. Carreño ◽  
...  

ABSTRACTA modified sol-gel technique was used to synthesize nanocomposites of Ni:SiO2 which resulted in Ni nanoparticles embedded in a SiO2 amorphous matrix. Transmission electron microscopy TEM analysis were performed to study the structure and morphology of the magnetic powders. The Ni particles were found to have a good dispersion and a controlled particle size distribution, with average particle radius of ∼ 3 nm. A detailed characterization of the magnetic properties was done through magnetization measurements M(T,H) in applied magnetic fields up to ± 7 T and for temperatures ranging from 2 to 300 K. The superparamagnetic (SPM) behavior of these metallic nanoparticles was inferred from the temperature dependence of the magnetization. The blocking temperature TB, as low as 20 K, was found to be dependent on Ni concentration, increasing with increasing Ni content. The SPM behavior above the blocking temperature TB was confirmed by the collapse of M/MS vs. H/T data in universal curves. These curves were fitted to a log-normal weighted Langevin function allowing us to determine the distribution of magnetic moments. Using the fitted magnetic moments and the Ni saturation magnetization, the radii of spherical particles were determined to be close to ∼ 3 nm, in excellent agreement with TEM analysis. Also, magnetic hysteresis loops were found to be symmetric along the field axis with no shift via exchange bias, suggesting that Ni particles are free from an oxide layer. In addition, for the most diluted samples, the magnetic behavior of these Ni nanoparticles is in excellent agreement with the predictions of randomly oriented and noninteracting magnetic particles. This was confirmed by the temperature dependence of the coercivity field that obeys the relation HC(T) = HC0 [1-(T/TB)1/2] below TB with HC0 ∼ 780 Oe.


Sign in / Sign up

Export Citation Format

Share Document