Synergistic Effect of Histamine and TNF-α on Monocyte Adhesion to Vascular Endothelial Cells

Inflammation ◽  
2012 ◽  
Vol 36 (2) ◽  
pp. 309-319 ◽  
Author(s):  
Chong Chen ◽  
Damir B. Khismatullin
Blood ◽  
1998 ◽  
Vol 91 (7) ◽  
pp. 2334-2340
Author(s):  
Gian Carlo Avanzi ◽  
Margherita Gallicchio ◽  
Flavia Bottarel ◽  
Loretta Gammaitoni ◽  
Giuliana Cavalloni ◽  
...  

GAS6 is a ligand for the tyrosine kinase receptors Rse, Axl, and Mer, but its function is poorly understood. Previous studies reported that both GAS6 and Axl are expressed by vascular endothelial cells (EC), which play a key role in leukocyte extravasation into tissues during inflammation through adhesive interactions with these cells. The aim of this work was to evaluate the GAS6 effect on the adhesive function of EC. Treatment of EC with GAS6 significantly inhibited adhesion of polymorphonuclear cells (PMN) induced by phorbol 12-myristate 13-acetate (PMA), platelet-activating factor (PAF), thrombin, interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), but not that induced by FMLP and IL-8. GAS6 did not affect adhesion to resting EC. Titration experiments showed that high concentrations of GAS6 were needed to inhibit PMN adhesion and that inhibition was dose-dependent at the concentration range of 0.1 to 1 μg/mL. One possibility was that high concentrations were needed to overwhelm the effect of endogenous GAS6 produced by EC. In line with this possibility, treatment of resting EC with soluble Axl significantly potentiated PMN adhesion. Analysis of localization of GAS6 by confocal microscopy and cytofluorimetric analysis showed that it is concentrated along the plasma membrane in resting EC and treatment with PAF induces depletion and/or redistribution of the molecule. These data suggest that GAS6 functions as a physiologic antiinflammatory agent produced by resting EC and depleted when proinflammatory stimuli turn on the proadhesive machinery of EC.


2019 ◽  
Vol 8 (1) ◽  
pp. 659-667 ◽  
Author(s):  
Li‐Tao Tong ◽  
Zhiyuan Ju ◽  
Liya Liu ◽  
Lili Wang ◽  
Xianrong Zhou ◽  
...  

2000 ◽  
Vol 68 (3) ◽  
pp. 1207-1214 ◽  
Author(s):  
Eiji Kita ◽  
Yoshihisa Yunou ◽  
Takaaki Kurioka ◽  
Hiroko Harada ◽  
Shinji Yoshikawa ◽  
...  

ABSTRACT In a previous study, we showed that infection with Shiga toxin (Stx)-producing Escherichia coli O157:H7 (strain SmrN-9) caused neurologic symptoms in malnourished mice with positive immunoreactions of Stx2 in brain tissues. The present study explores the mechanism of how Stx injures the vascular endothelium to enter the central nervous system in mice. Oral infection with strain SmrN-9 elicited a tumor necrosis factor alpha (TNF-α) response in the blood as early as 2 days after infection, while Stx was first detected at 3 days postinfection. In the brain, TNF-α was detected at day 3, and its quantity was increased over the next 3 days. Frozen sections of the brains from moribound mice contained high numbers of apoptotic cells. Glycolipids recognized by an anti-Gb3 monoclonal antibody were extracted from the brain, and purified Stx2 was able to bind to the glycolipids. In human umbilical vascular endothelial cells (HUVEC) cultured with fluorescein-labeled Stx2 (100 ng/ml), TNF-α (20 U/ml) significantly facilitated the intracellular compartmentalization of fluorescence during 24 h of incubation, suggesting the enhanced intracellular processing of Stx2. Consequently, higher levels of apoptosis in HUVEC were found at 48 h. Short-term exposure of HUVEC to Stx2 abrogated their apoptotic response to subsequent incubation with TNF-α alone or TNF-α and Stx2. In contrast, primary exposure of HUVEC to TNF-α followed by exposure to Stx2 alone or TNF-α and Stx2 induced apoptosis at the same level as obtained after 48-h incubation with these two agents. These results suggest that the rapid production of circulating TNF-α after infection induces a state of competence in vascular endothelial cells to undergo apoptosis, which would be finally achieved by subsequent elevation of Stx in the blood. In this synergistic action, target cells must be first exposed to TNF-α. Such cell injury may be a prerequisite to brain damage after infection with Stx-producing E. coliO157:H7.


Sign in / Sign up

Export Citation Format

Share Document