Negative Correlations and Entanglement in Higher-Spin Dicke States

2016 ◽  
Vol 55 (10) ◽  
pp. 4595-4604 ◽  
Author(s):  
Xiaoqian Wang ◽  
Wei Zhong ◽  
Xiaoguang Wang
Keyword(s):  
2020 ◽  
Author(s):  
David Zanders ◽  
Goran Bačić ◽  
Dominique Leckie ◽  
Oluwadamilola Odegbesan ◽  
Jeremy M. Rawson ◽  
...  

Attempted preparation of a chelated Co(II) β-silylamide re-sulted in the unprecedented disproportionation to Co(0) and a spirocyclic cobalt(IV) bis(β-silyldiamide): [Co[(NtBu)2SiMe2]2] (1). Compound 1 exhibits a room temperature magnetic moment of 1.8 B.M and a solid state axial EPR spectrum diagnostic of a rare S = 1/2 configuration. Semicanonical coupled-cluster calculations (DLPNO-CCSD(T)) revealed the doublet state was clearly preferred (–27 kcal/mol) over higher spin configurations for which density functional theory (DFT) showed no energetic preference. Unlike other Co(IV) complexes, 1 had remarkable thermal stability, and was demonstrated to form a stable self-limiting monolayer in initial atomic layer deposition (ALD) surface saturation tests. The ease of synthesis and high-stability make 1 an attractive starting point to begin investigating otherwise inaccessible Co(IV) intermediates and synthesizing new materials.


2019 ◽  
Vol 12 (4) ◽  
Author(s):  
Ye-Chao Liu ◽  
Xiao-Dong Yu ◽  
Jiangwei Shang ◽  
Huangjun Zhu ◽  
Xiangdong Zhang

2021 ◽  
Vol 103 (2) ◽  
Author(s):  
Zihao Li ◽  
Yun-Guang Han ◽  
Hao-Feng Sun ◽  
Jiangwei Shang ◽  
Huangjun Zhu
Keyword(s):  

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Damon J. Binder ◽  
Shai M. Chester ◽  
Max Jerdee ◽  
Silviu S. Pufu

Abstract We study the space of 3d $$ \mathcal{N} $$ N = 6 SCFTs by combining numerical bootstrap techniques with exact results derived using supersymmetric localization. First we derive the superconformal block decomposition of the four-point function of the stress tensor multiplet superconformal primary. We then use supersymmetric localization results for the $$ \mathcal{N} $$ N = 6 U(N)k × U(N + M)−k Chern-Simons-matter theories to determine two protected OPE coefficients for many values of N, M, k. These two exact inputs are combined with the numerical bootstrap to compute precise rigorous islands for a wide range of N, k at M = 0, so that we can non-perturbatively interpolate between SCFTs with M-theory duals at small k and string theory duals at large k. We also present evidence that the localization results for the U(1)2M × U (1 + M)−2M theory, which has a vector-like large-M limit dual to higher spin theory, saturates the bootstrap bounds for certain protected CFT data. The extremal functional allows us to then conjecturally reconstruct low-lying CFT data for this theory.


2021 ◽  
Vol 103 (8) ◽  
Author(s):  
Sizheng Ma ◽  
Matthew Giesler ◽  
Mark A. Scheel ◽  
Vijay Varma
Keyword(s):  

2021 ◽  
pp. 136436
Author(s):  
Stephon Alexander ◽  
Leah Jenks ◽  
Evan McDonough
Keyword(s):  

2019 ◽  
Vol 2019 (10) ◽  
Author(s):  
Dionysios Anninos ◽  
Frederik Denef ◽  
Ruben Monten ◽  
Zimo Sun
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marcin Wieśniak

AbstractQuantum correlations, in particular those, which enable to violate a Bell inequality, open a way to advantage in certain communication tasks. However, the main difficulty in harnessing quantumness is its fragility to, e.g, noise or loss of particles. We study the persistency of Bell correlations of GHZ based mixtures and Dicke states. For the former, we consider quantum communication complexity reduction (QCCR) scheme, and propose new Bell inequalities (BIs), which can be used in that scheme for higher persistency in the limit of large number of particles N. In case of Dicke states, we show that persistency can reach 0.482N, significantly more than reported in previous studies.


Sign in / Sign up

Export Citation Format

Share Document