scholarly journals Something’s Missing? A Procedure for Extending Item Content Data Sets in the Context of Recommender Systems

Author(s):  
Bernd Heinrich ◽  
Marcus Hopf ◽  
Daniel Lohninger ◽  
Alexander Schiller ◽  
Michael Szubartowicz

Abstract The rapid development of e-commerce has led to a swiftly increasing number of competing providers in electronic markets, which maintain their own, individual data describing the offered items. Recommender systems are popular and powerful tools relying on this data to guide users to their individually best item choice. Literature suggests that data quality of item content data has substantial influence on recommendation quality. Thereby, the dimension completeness is expected to be particularly important. Herein resides a considerable chance to improve recommendation quality by increasing completeness via extending an item content data set with an additional data set of the same domain. This paper therefore proposes a procedure for such a systematic data extension and analyzes effects of the procedure regarding items, content and users based on real-world data sets from four leading web portals. The evaluation results suggest that the proposed procedure is indeed effective in enabling improved recommendation quality.

Information ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 551
Author(s):  
Yong Zheng

Recommender systems have been successfully applied to assist decision making in multiple domains and applications. Multi-criteria recommender systems try to take the user preferences on multiple criteria into consideration, in order to further improve the quality of the recommendations. Most recently, the utility-based multi-criteria recommendation approach has been proposed as an effective and promising solution. However, the issue of over-/under-expectations was ignored in the approach, which may bring risks to the recommendation model. In this paper, we propose a penalty-enhanced model to alleviate this issue. Our experimental results based on multiple real-world data sets can demonstrate the effectiveness of the proposed solutions. In addition, the outcomes of the proposed solution can also help explain the characteristics of the applications by observing the treatment on the issue of over-/under-expectations.


2021 ◽  
pp. 1-13
Author(s):  
Hailin Liu ◽  
Fangqing Gu ◽  
Zixian Lin

Transfer learning methods exploit similarities between different datasets to improve the performance of the target task by transferring knowledge from source tasks to the target task. “What to transfer” is a main research issue in transfer learning. The existing transfer learning method generally needs to acquire the shared parameters by integrating human knowledge. However, in many real applications, an understanding of which parameters can be shared is unknown beforehand. Transfer learning model is essentially a special multi-objective optimization problem. Consequently, this paper proposes a novel auto-sharing parameter technique for transfer learning based on multi-objective optimization and solves the optimization problem by using a multi-swarm particle swarm optimizer. Each task objective is simultaneously optimized by a sub-swarm. The current best particle from the sub-swarm of the target task is used to guide the search of particles of the source tasks and vice versa. The target task and source task are jointly solved by sharing the information of the best particle, which works as an inductive bias. Experiments are carried out to evaluate the proposed algorithm on several synthetic data sets and two real-world data sets of a school data set and a landmine data set, which show that the proposed algorithm is effective.


2011 ◽  
pp. 24-32 ◽  
Author(s):  
Nicoleta Rogovschi ◽  
Mustapha Lebbah ◽  
Younès Bennani

Most traditional clustering algorithms are limited to handle data sets that contain either continuous or categorical variables. However data sets with mixed types of variables are commonly used in data mining field. In this paper we introduce a weighted self-organizing map for clustering, analysis and visualization mixed data (continuous/binary). The learning of weights and prototypes is done in a simultaneous manner assuring an optimized data clustering. More variables has a high weight, more the clustering algorithm will take into account the informations transmitted by these variables. The learning of these topological maps is combined with a weighting process of different variables by computing weights which influence the quality of clustering. We illustrate the power of this method with data sets taken from a public data set repository: a handwritten digit data set, Zoo data set and other three mixed data sets. The results show a good quality of the topological ordering and homogenous clustering.


Author(s):  
Sajad Badalkhani ◽  
Ramazan Havangi ◽  
Mohsen Farshad

There is an extensive literature regarding multi-robot simultaneous localization and mapping (MRSLAM). In most part of the research, the environment is assumed to be static, while the dynamic parts of the environment degrade the estimation quality of SLAM algorithms and lead to inherently fragile systems. To enhance the performance and robustness of the SLAM in dynamic environments (SLAMIDE), a novel cooperative approach named parallel-map (p-map) SLAM is introduced in this paper. The objective of the proposed method is to deal with the dynamics of the environment, by detecting dynamic parts and preventing the inclusion of them in SLAM estimations. In this approach, each robot builds a limited map in its own vicinity, while the global map is built through a hybrid centralized MRSLAM. The restricted size of the local maps, bounds computational complexity and resources needed to handle a large scale dynamic environment. Using a probabilistic index, the proposed method differentiates between stationary and moving landmarks, based on their relative positions with other parts of the environment. Stationary landmarks are then used to refine a consistent map. The proposed method is evaluated with different levels of dynamism and for each level, the performance is measured in terms of accuracy, robustness, and hardware resources needed to be implemented. The method is also evaluated with a publicly available real-world data-set. Experimental validation along with simulations indicate that the proposed method is able to perform consistent SLAM in a dynamic environment, suggesting its feasibility for MRSLAM applications.


2017 ◽  
Vol 6 (3) ◽  
pp. 71 ◽  
Author(s):  
Claudio Parente ◽  
Massimiliano Pepe

The purpose of this paper is to investigate the impact of weights in pan-sharpening methods applied to satellite images. Indeed, different data sets of weights have been considered and compared in the IHS and Brovey methods. The first dataset contains the same weight for each band while the second takes in account the weighs obtained by spectral radiance response; these two data sets are most common in pan-sharpening application. The third data set is resulting by a new method. It consists to compute the inertial moment of first order of each band taking in account the spectral response. For testing the impact of the weights of the different data sets, WorlView-3 satellite images have been considered. In particular, two different scenes (the first in urban landscape, the latter in rural landscape) have been investigated. The quality of pan-sharpened images has been analysed by three different quality indexes: Root mean square error (RMSE), Relative average spectral error (RASE) and Erreur Relative Global Adimensionnelle de Synthèse (ERGAS).


2005 ◽  
Vol 5 (7) ◽  
pp. 1835-1841 ◽  
Author(s):  
S. Noël ◽  
M. Buchwitz ◽  
H. Bovensmann ◽  
J. P. Burrows

Abstract. A first validation of water vapour total column amounts derived from measurements of the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) in the visible spectral region has been performed. For this purpose, SCIAMACHY water vapour data have been determined for the year 2003 using an extended version of the Differential Optical Absorption Spectroscopy (DOAS) method, called Air Mass Corrected (AMC-DOAS). The SCIAMACHY results are compared with corresponding water vapour measurements by the Special Sensor Microwave Imager (SSM/I) and with model data from the European Centre for Medium-Range Weather Forecasts (ECMWF). In confirmation of previous results it could be shown that SCIAMACHY derived water vapour columns are typically slightly lower than both SSM/I and ECMWF data, especially over ocean areas. However, these deviations are much smaller than the observed scatter of the data which is caused by the different temporal and spatial sampling and resolution of the data sets. For example, the overall difference with ECMWF data is only -0.05 g/cm2 whereas the typical scatter is in the order of 0.5 g/cm2. Both values show almost no variation over the year. In addition, first monthly means of SCIAMACHY water vapour data have been computed. The quality of these monthly means is currently limited by the availability of calibrated SCIAMACHY spectra. Nevertheless, first comparisons with ECMWF data show that SCIAMACHY (and similar instruments) are able to provide a new independent global water vapour data set.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Michele Allegra ◽  
Elena Facco ◽  
Francesco Denti ◽  
Alessandro Laio ◽  
Antonietta Mira

Abstract One of the founding paradigms of machine learning is that a small number of variables is often sufficient to describe high-dimensional data. The minimum number of variables required is called the intrinsic dimension (ID) of the data. Contrary to common intuition, there are cases where the ID varies within the same data set. This fact has been highlighted in technical discussions, but seldom exploited to analyze large data sets and obtain insight into their structure. Here we develop a robust approach to discriminate regions with different local IDs and segment the points accordingly. Our approach is computationally efficient and can be proficiently used even on large data sets. We find that many real-world data sets contain regions with widely heterogeneous dimensions. These regions host points differing in core properties: folded versus unfolded configurations in a protein molecular dynamics trajectory, active versus non-active regions in brain imaging data, and firms with different financial risk in company balance sheets. A simple topological feature, the local ID, is thus sufficient to achieve an unsupervised segmentation of high-dimensional data, complementary to the one given by clustering algorithms.


2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Chunzhong Li ◽  
Zongben Xu

Structure of data set is of critical importance in identifying clusters, especially the density difference feature. In this paper, we present a clustering algorithm based on density consistency, which is a filtering process to identify same structure feature and classify them into same cluster. This method is not restricted by the shapes and high dimension data set, and meanwhile it is robust to noises and outliers. Extensive experiments on synthetic and real world data sets validate the proposed the new clustering algorithm.


Author(s):  
MUSTAPHA LEBBAH ◽  
YOUNÈS BENNANI ◽  
NICOLETA ROGOVSCHI

This paper introduces a probabilistic self-organizing map for topographic clustering, analysis and visualization of multivariate binary data or categorical data using binary coding. We propose a probabilistic formalism dedicated to binary data in which cells are represented by a Bernoulli distribution. Each cell is characterized by a prototype with the same binary coding as used in the data space and the probability of being different from this prototype. The learning algorithm, Bernoulli on self-organizing map, that we propose is an application of the EM standard algorithm. We illustrate the power of this method with six data sets taken from a public data set repository. The results show a good quality of the topological ordering and homogenous clustering.


2016 ◽  
Vol 25 (3) ◽  
pp. 431-440 ◽  
Author(s):  
Archana Purwar ◽  
Sandeep Kumar Singh

AbstractThe quality of data is an important task in the data mining. The validity of mining algorithms is reduced if data is not of good quality. The quality of data can be assessed in terms of missing values (MV) as well as noise present in the data set. Various imputation techniques have been studied in MV study, but little attention has been given on noise in earlier work. Moreover, to the best of knowledge, no one has used density-based spatial clustering of applications with noise (DBSCAN) clustering for MV imputation. This paper proposes a novel technique density-based imputation (DBSCANI) built on density-based clustering to deal with incomplete values in the presence of noise. Density-based clustering algorithm proposed by Kriegal groups the objects according to their density in spatial data bases. The high-density regions are known as clusters, and the low-density regions refer to the noise objects in the data set. A lot of experiments have been performed on the Iris data set from life science domain and Jain’s (2D) data set from shape data sets. The performance of the proposed method is evaluated using root mean square error (RMSE) as well as it is compared with existing K-means imputation (KMI). Results show that our method is more noise resistant than KMI on data sets used under study.


Sign in / Sign up

Export Citation Format

Share Document