Electrode system for large-scale reverse electrodialysis: water electrolysis, bubble resistance, and inorganic scaling

2019 ◽  
Vol 49 (5) ◽  
pp. 517-528 ◽  
Author(s):  
Ji-Hyung Han ◽  
Kyo-sik Hwang ◽  
Haejun Jeong ◽  
Sung-Yong Byeon ◽  
Joo-Youn Nam ◽  
...  
2020 ◽  
Vol 6 (6) ◽  
pp. 1597-1605
Author(s):  
Ji-Hyung Han ◽  
Haejun Jeong ◽  
Kyo Sik Hwang ◽  
Chan-Soo Kim ◽  
Namjo Jeong ◽  
...  

To suppress inorganic scaling around the cathode in reverse electrodialysis, we suggest a bipolar membrane-containing asymmetric electrode system without significant power loss.


2020 ◽  
Vol 4 (8) ◽  
pp. 4273-4284 ◽  
Author(s):  
Carolina Tristán ◽  
Marta Rumayor ◽  
Antonio Dominguez-Ramos ◽  
Marcos Fallanza ◽  
Raquel Ibáñez ◽  
...  

LCA of lab-scale and large-scale stand-alone RED stacks and an up-scaled RED system co-located with a SWRO desalination plant.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1336 ◽  
Author(s):  
Alejandro N. Colli ◽  
Hubert H. Girault ◽  
Alberto Battistel

Water electrolysis is a promising approach to hydrogen production from renewable energy sources. Alkaline water electrolyzers allow using non-noble and low-cost materials. An analysis of common assumptions and experimental conditions (low concentrations, low temperature, low current densities, and short-term experiments) found in the literature is reported. The steps to estimate the reaction overpotentials for hydrogen and oxygen reactions are reported and discussed. The results of some of the most investigated electrocatalysts, namely from the iron group elements (iron, nickel, and cobalt) and chromium are reported. Past findings and recent progress in the development of efficient anode and cathode materials appropriate for large-scale water electrolysis are presented. The experimental work is done involving the direct-current electrolysis of highly concentrated potassium hydroxide solutions at temperatures between 30 and 100 °C, which are closer to industrial applications than what is usually found in literature. Stable cell components and a good performance was achieved using Raney nickel as a cathode and stainless steel 316L as an anode by means of a monopolar cell at 75 °C, which ran for one month at 300 mA cm−2. Finally, the proposed catalysts showed a total kinetic overpotential of about 550 mV at 75 °C and 1 A cm−2.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qiangmin Yu ◽  
Zhiyuan Zhang ◽  
Siyao Qiu ◽  
Yuting Luo ◽  
Zhibo Liu ◽  
...  

AbstractThe use of highly-active and robust catalysts is crucial for producing green hydrogen by water electrolysis as we strive to achieve global carbon neutrality. Noble metals like platinum are currently used catalysts in industry for the hydrogen evolution, but suffer from scarcity, high price and unsatisfied performance and stability at large current density, restrict their large-scale implementations. Here we report the synthesis of a type of monolith catalyst consisting of a metal disulfide (e.g., tantalum sulfides) vertically bonded to a conductive substrate of the same metal tantalum by strong covalent bonds. These features give the monolith catalyst a mechanically-robust and electrically near-zero-resistance interface, leading to an excellent hydrogen evolution performance including rapid charge transfer and excellent durability, together with a low overpotential of 398 mV to achieve a current density of 2,000 mA cm−2 as required by industry. The monolith catalyst has a negligible performance decay after 200 h operation at large current densities. In light of its robust and metallic interface and the various choices of metals giving the same structure, such monolith materials would have broad uses besides catalysis.


2018 ◽  
Vol 203 ◽  
pp. 418-426 ◽  
Author(s):  
Ramato Ashu Tufa ◽  
Jaromír Hnát ◽  
Michal Němeček ◽  
Roman Kodým ◽  
Efrem Curcio ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Karolina Kordek-Khalil ◽  
Dawid Janas ◽  
Piotr Rutkowski

AbstractLarge-scale sustainable hydrogen production by water electrolysis requires a highly active yet low-cost hydrogen evolution reaction (HER) electrocatalyst. Conductive carbon nanomaterials with high surface areas are promising candidates for this purpose. In this contribution, single-walled carbon nanotubes (SWCNTs) are assembled into free-standing films and directly used as HER electrodes. During the initial 20 h of electrocatalytic performance in galvanostatic conditions, the films undergo activation, which results in a gradual overpotential decrease to the value of 225 mV. Transient physicochemical properties of the films at various activation stages are characterized to reveal the material features responsible for the activity boost. Results indicate that partial oxidation of iron nanoparticles encapsulated in SWCNTs is the major contributor to the activity enhancement. Furthermore, besides high activity, the material, composed of only earth-abundant elements, possesses exceptional performance stability, with no activity loss for 200 h of galvanostatic performance at − 10 mA cm−2. In conclusion, the work presents the strategy of engineering a highly active HER electrode composed of widely available elements and provides new insights into the origins of electrocatalytic performance of SWCNT-based materials in alkaline HER.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3206 ◽  
Author(s):  
◽  
George Kosmadakis ◽  
Francesco Giacalone ◽  
Bartolomé Ortega-Delgado ◽  
Andrea Cipollina ◽  
...  

In the examined heat engine, reverse electrodialysis (RED) is used to generate electricity from the salinity difference between two artificial solutions. The salinity gradient is restored through a multi-effect distillation system (MED) powered by low-temperature waste heat at 100 °C. The current work presents the first comprehensive economic and environmental analysis of this advanced concept, when varying the number of MED effects, the system sizing, the salt of the solutions, and other key parameters. The levelized cost of electricity (LCOE) has been calculated, showing that competitive solutions can be reached only when the system is at least medium to large scale. The lowest LCOE, at about 0.03 €/kWh, is achieved using potassium acetate salt and six MED effects while reheating the solutions. A similar analysis has been conducted when using the system in energy storage mode, where the two regenerated solutions are stored in reservoir tanks and the RED is operating for a few hours per day, supplying valuable peak power, resulting in a LCOE just below 0.10 €/kWh. A life-cycle assessment has been also carried out, showing that the case with the lowest environmental impact is the same as the one with the most attractive economic performance. Results indicate that the material manufacturing has the main impact; primarily the metallic parts of the MED. Overall, this study highlights the development efforts required in terms of both membrane performance and cost reduction, in order to make this technology cost effective in the future.


Sign in / Sign up

Export Citation Format

Share Document