scholarly journals Evaluation of the Economic and Environmental Performance of Low-Temperature Heat to Power Conversion using a Reverse Electrodialysis – Multi-Effect Distillation System

Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3206 ◽  
Author(s):  
◽  
George Kosmadakis ◽  
Francesco Giacalone ◽  
Bartolomé Ortega-Delgado ◽  
Andrea Cipollina ◽  
...  

In the examined heat engine, reverse electrodialysis (RED) is used to generate electricity from the salinity difference between two artificial solutions. The salinity gradient is restored through a multi-effect distillation system (MED) powered by low-temperature waste heat at 100 °C. The current work presents the first comprehensive economic and environmental analysis of this advanced concept, when varying the number of MED effects, the system sizing, the salt of the solutions, and other key parameters. The levelized cost of electricity (LCOE) has been calculated, showing that competitive solutions can be reached only when the system is at least medium to large scale. The lowest LCOE, at about 0.03 €/kWh, is achieved using potassium acetate salt and six MED effects while reheating the solutions. A similar analysis has been conducted when using the system in energy storage mode, where the two regenerated solutions are stored in reservoir tanks and the RED is operating for a few hours per day, supplying valuable peak power, resulting in a LCOE just below 0.10 €/kWh. A life-cycle assessment has been also carried out, showing that the case with the lowest environmental impact is the same as the one with the most attractive economic performance. Results indicate that the material manufacturing has the main impact; primarily the metallic parts of the MED. Overall, this study highlights the development efforts required in terms of both membrane performance and cost reduction, in order to make this technology cost effective in the future.

2020 ◽  
Vol 4 (8) ◽  
pp. 4273-4284 ◽  
Author(s):  
Carolina Tristán ◽  
Marta Rumayor ◽  
Antonio Dominguez-Ramos ◽  
Marcos Fallanza ◽  
Raquel Ibáñez ◽  
...  

LCA of lab-scale and large-scale stand-alone RED stacks and an up-scaled RED system co-located with a SWRO desalination plant.


Author(s):  
Jeff Noall ◽  
Timothy Ernst

Reducing the fuel consumption and greenhouse gas emissions of large commercial vehicles is a growing priority as governments around the globe introduce more stringent emissions regulations and as companies work to reduce their carbon footprint. Organic Rankine Cycles (ORC) can be applied to these vehicles to recover power from engine waste heat, thereby increasing efficiency and reducing fuel burn. However, the available waste heat consists of both high and low temperature sources making an efficient and cost-effective utilization of these resources challenging. In order to utilize both waste heat streams effectively, a single rotor, dual-entry turbine expander capable of accepting process flow simultaneously from high and low pressure supplies was developed, manufactured and tested. Test results show that the turbine concept was able to meet performance targets while decreasing the size, cost and complexity of the dual pressure ORC.


Desalination ◽  
2019 ◽  
Vol 460 ◽  
pp. 64-80 ◽  
Author(s):  
Sina Goodarzi ◽  
Ebrahim Jahanshahi Javaran ◽  
Mohammad Rahnama ◽  
Mohamadreza Ahmadi

Author(s):  
Helen Skop ◽  
Jim Pezzuto ◽  
Valeriy G. Oleynikov-White

About 60% of unrecovered waste heat in US is low temperature waste heat (<230°C). In case of exhaust flows that contain water vapor over 20% by mass (baking, drying, biofuel production) the latent heat of the “wet component” plays a key role in the process of energy recovery and makes such a recovery economically feasible. Low temperature sources of waste heat have a few specific features, so majority of available techniques developed for high temperature waste heat recovery cannot be successfully applied to justify the cost-effective benefits. The paper discusses the basic requirements for appropriate equipment development along with possible options for heat and water recovery.


Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 48
Author(s):  
Pauline Zimmermann ◽  
Simon Birger Byremo Solberg ◽  
Önder Tekinalp ◽  
Jacob Joseph Lamb ◽  
Øivind Wilhelmsen ◽  
...  

The Reverse electrodialysis heat engine (REDHE) combines a reverse electrodialysis stack for power generation with a thermal regeneration unit to restore the concentration difference of the salt solutions. Current approaches for converting low-temperature waste heat to electricity with REDHE have not yielded conversion efficiencies and profits that would allow for the industrialization of the technology. This review explores the concept of Heat-to-Hydrogen with REDHEs and maps crucial developments toward industrialization. We discuss current advances in membrane development that are vital for the breakthrough of the RED Heat Engine. In addition, the choice of salt is a crucial factor that has not received enough attention in the field. Based on ion properties relevant for both the transport through IEMs and the feasibility for regeneration, we pinpoint the most promising salts for use in REDHE, which we find to be KNO3, LiNO3, LiBr and LiCl. To further validate these results and compare the system performance with different salts, there is a demand for a comprehensive thermodynamic model of the REDHE that considers all its units. Guided by such a model, experimental studies can be designed to utilize the most favorable process conditions (e.g., salt solutions).


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1091
Author(s):  
Farheen F. Jaldurgam ◽  
Zubair Ahmad ◽  
Farid Touati

Thermoelectricity is a promising technology that directly converts heat energy into electricity and finds its use in enormous applications. This technology can be used for waste heat recovery from automobile exhausts and industrial sectors and convert the heat from solar energy, especially in hot and humid areas such as Qatar. The large-scale, cost-effective commercialization of thermoelectric generators requires the processing and fabrication of nanostructured materials with quick, easy, and inexpensive techniques. Moreover, the methods should be replicable and reproducible, along with stability in terms of electrical, thermal, and mechanical properties of the TE material. This report summarizes and compares the up-to-date technologies available for batch production of the earth-abundant and ecofriendly materials along with some notorious works in this domain. We have also evaluated and assessed the pros and cons of each technique and its effect on the properties of the materials. The simplicity, time, and cost of each synthesis technique have also been discussed and compared with the conventional methods.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3385 ◽  
Author(s):  
Patricia Palenzuela ◽  
Marina Micari ◽  
Bartolomé Ortega-Delgado ◽  
Francesco Giacalone ◽  
Guillermo Zaragoza ◽  
...  

A performance analysis of a salinity gradient heat engine (SGP-HE) is presented for the conversion of low temperature heat into power via a closed-loop Reverse Electrodialysis (RED) coupled with Multi-Effect Distillation (MED). Mathematical models for the RED and MED systems have been purposely developed in order to investigate the performance of both processes and have been then coupled to analyze the efficiency of the overall integrated system. The influence of the main operating conditions (i.e., solutions concentration and velocity) has been quantified, looking at the power density and conversion efficiency of the RED unit, MED Specific Thermal Consumption (STC) and at the overall system exergy efficiency. Results show how the membrane properties (i.e., electrical resistance, permselectivity, water and salt permeability) dramatically affect the performance of the RED process. In particular, the power density achievable using membranes with optimized features (ideal membranes) can be more than three times higher than that obtained with current reference ion exchange membranes. On the other hand, MED STC is strongly influenced by the available waste heat temperature, feed salinity and recovery ratio to be achieved. Lowest values of STC below 25 kWh/m3 can be reached at 100 °C and 27 effects. Increasing the feed salinity also increases the STC, while an increase in the recovery ratio is beneficial for the thermal efficiency of the system. For the integrated system, a more complex influence of operating parameters has been found, leading to the identification of some favorable operating conditions in which exergy efficiency close to 7% (1.4% thermal) can be achieved for the case of current membranes, and up to almost 31% (6.6% thermal) assuming ideal membrane properties.


2021 ◽  
Vol 13 (11) ◽  
pp. 6035
Author(s):  
Robin Zeh ◽  
Björn Ohlsen ◽  
David Philipp ◽  
David Bertermann ◽  
Tim Kotz ◽  
...  

Low temperature district heating and cooling networks (5GDHC) in combination with very shallow geothermal energy potentials enable the complete renewable heating and cooling supply of settlements up to entire city districts. With the help of 5GDHC, heating and cooling can be distributed at a low temperature level with almost no distribution losses and made useable to consumers via decentralized heat pumps (HP). Numerous renewable heat sources, from wastewater heat exchangers and low-temperature industrial waste heat to borehole heat exchangers and large-scale geothermal collector systems (LSC), can be used for these networks. The use of large-scale geothermal collector systems also offers the opportunity to shift heating and cooling loads seasonally, contributing to flexibility in the heating network. In addition, the soil can be cooled below freezing point due to the strong regeneration caused by the solar irradiation. Multilayer geothermal collector systems can be used to deliberately generate excessive cooling of individual areas in order to provide cooling energy for residential buildings, office complexes or industrial applications. Planning these systems requires expertise and understanding regarding the interaction of these technologies in the overall system. This paper provides a summary of experience in planning 5GDHC with large-scale geothermal collector systems as well as other renewable heat sources.


Sign in / Sign up

Export Citation Format

Share Document