Quantitative label-free proteomics and biochemical analysis of Phaeodactylum tricornutum cultivation on dairy manure wastewater
AbstractMicroalgae cultivation on wastewater offers the dual benefit of lowering costs for feedstock production with simultaneous wastewater remediation. This study utilized biochemical and quantitative label-free proteomic approaches to evaluate the growth and proteomic response for diatom Phaeodactylum tricornutum cultivated on flushed dairy manure wastewater (DMW). Comparing several DMW dilutions (up to 60% DMW diluted in seawater) with a synthetic seawater medium indicates that biomass and lipid yields correlate with the starting nitrogen content of the DMW dilution. Phaeodactylum tricornutum cultivated on DMW exhibits elevated levels of polyunsaturated fatty acids (PUFAs), particularly docosapentaenoic acid (DPA, 22:5 n-3). Proteomic analysis revealed alterations in the regulations of proteins associated with protein metabolism, cellular signaling, transcription and translation, protein trafficking, and oxidative stress management pathways when comparing P. tricornutum cultivation on diluted DMW versus synthetic media, thus providing insights into how P. tricornutum reorganizes its proteome in response to a complex wastewater source. Graphical abstract