scholarly journals Simplified, interpretable graph convolutional neural networks for small molecule activity prediction

Author(s):  
Jeffrey K. Weber ◽  
Joseph A. Morrone ◽  
Sugato Bagchi ◽  
Jan D. Estrada Pabon ◽  
Seung-gu Kang ◽  
...  

AbstractWe here present a streamlined, explainable graph convolutional neural network (gCNN) architecture for small molecule activity prediction. We first conduct a hyperparameter optimization across nearly 800 protein targets that produces a simplified gCNN QSAR architecture, and we observe that such a model can yield performance improvements over both standard gCNN and RF methods on difficult-to-classify test sets. Additionally, we discuss how reductions in convolutional layer dimensions potentially speak to the “anatomical” needs of gCNNs with respect to radial coarse graining of molecular substructure. We augment this simplified architecture with saliency map technology that highlights molecular substructures relevant to activity, and we perform saliency analysis on nearly 100 data-rich protein targets. We show that resultant substructural clusters are useful visualization tools for understanding substructure-activity relationships. We go on to highlight connections between our models’ saliency predictions and observations made in the medicinal chemistry literature, focusing on four case studies of past lead finding and lead optimization campaigns.

2015 ◽  
Vol 27 (5) ◽  
pp. 738-750 ◽  
Author(s):  
Zhoufeng Liu ◽  
Chunlei Li ◽  
Quanjun Zhao ◽  
Liang Liao ◽  
Yan Dong

Purpose – Fabric defect detection plays an important role in textile quality control. The purpose of this paper is to propose a fabric defect detection algorithm via context-based local texture saliency analysis. Design/methodology/approach – In the proposed algorithm, a target image is first divided into blocks, then the Local Binary Pattern (LBP) technique is used to extract the texture features of blocks. Second, for a given image block, several other blocks are randomly chosen for calculating the LBP contrast between a given block and the randomly chosen blocks. Based on the obtained contrast information, a saliency map is produced. Finally, saliency map is segmented by using an optimal threshold, which is obtained by an iterative approach. Findings – The experimental results show that the proposed algorithm, integrating local texture features and global image texture information, can detect texture defects effectively. Originality/value – In this paper, a novel fabric defect detection algorithm via context-based local texture saliency analysis is proposed.


2015 ◽  
Vol 51 (89) ◽  
pp. 16014-16032 ◽  
Author(s):  
Sankarasekaran Shanmugaraju ◽  
Partha Sarathi Mukherjee

In this review article we provide an overview of the recent developments made in small molecule-based turn-off fluorescent sensors for nitroaromatic explosives with special focus on organic and H-bonded supramolecular sensors.


2014 ◽  
Vol 126 (38) ◽  
pp. 10220-10223 ◽  
Author(s):  
Peng Zhao ◽  
Zitian Chen ◽  
Yizhou Li ◽  
Dawei Sun ◽  
Yuan Gao ◽  
...  

Author(s):  
Katherine M. Almasy ◽  
Jonathan P. Davies ◽  
Samantha M. Lisy ◽  
Reyhaneh Tirgar ◽  
Sirena C. Tran ◽  
...  

ABSTRACTFlaviviruses, including Dengue and Zika, are widespread human pathogens, however, no broadly active therapeutics exist to fight infection. Here, we establish the recently discovered pharmacologic modulator of ER proteostasis 147 as an effective host-centered antiviral strategy. Compound 147 reduces infection by attenuating viral replication without causing toxicity in host cells. 147 is a preferential activator of the ATF6 pathway of the unfolded protein response, which requires targeting of cysteine residues primarily on protein disulfide isomerases (PDIs). We find that the antiviral activity of 147 is independent of ATF6 induction but does require modification of reactive thiols on protein targets. Targeting PDIs using RNAi and other PDI small molecule inhibitors was unable to recapitulate the antiviral effects, suggesting additional identified protein targets of 147 may mediate the activity. Importantly, 147 can impair infection of multiple strains of Dengue and Zika virus, indicating that it is suitable as a broad-spectrum antiviral agent.


2021 ◽  
Author(s):  
Frances M Potjewyd ◽  
Joel K Annor-Gyamfi ◽  
Jeffrey Aube ◽  
Shaoyou Chu ◽  
Ivie L Conlon ◽  
...  

Introduction: The portfolio of novel targets to treat Alzheimer's disease (AD) has been enriched by the AMP-AD program. Methods: A cheminformatics-driven effort enabled identification of existing small molecule modulators for many protein targets nominated by AMP-AD and suitable positive control compounds to be included in the set. Results: We have built an annotated set of 171 small molecule modulators, including mostly inhibitors, targeting 98 unique proteins that have been nominated by AMP-AD consortium members as novel targets for AD treatment. These small molecules vary in their quality and should be considered chemical tools that can be used in efforts to validate therapeutic hypotheses, but which would require further optimization. A physical copy of the AD Informer Set can be ordered via the AD Knowledge Portal. Discussion: Small molecule tools that enable target validation are important tools for the translation of novel hypotheses into viable therapeutic strategies for AD.


2020 ◽  
Author(s):  
Zachary Pearson ◽  
Manvendra Singh ◽  
Zarko Boskovic

<div> <div> <div> <p>We report the comparison of two small-molecule collections synthesized at KU at two different eras. We used a machine learning tool to classify the compounds in these collections by their predicted protein targets. The analyses shine light on the evolution of medicinal chemistry research at the University of Kansas, and reveal several new associations between compounds and protein targets. </p> </div> </div> </div>


2014 ◽  
Vol 19 (7) ◽  
pp. 1000-1013 ◽  
Author(s):  
John W. Cuozzo ◽  
Holly H. Soutter

Production of novel soluble and membrane-localized protein targets for functional and affinity-based screening has often been limited by the inability of traditional protein-expression systems to generate recombinant proteins that have properties similar to those of their endogenous counterparts. Such targets have often been labeled as challenging. Although biological validation of these challenging targets for specific disease areas may be strong, discovery of small-molecule modulators can be greatly delayed or completely halted due to target-expression issues. In this article, the limitations of traditional protein-expression systems will be discussed along with new systems designed to overcome these challenges. Recent work in this field has focused on two major areas for both soluble and membrane targets: construct-design strategies to improve expression levels and new hosts that can carry out the posttranslational modifications necessary for proper target folding and function. Another area of active research has been on the reconstitution of solubilized membrane targets for both structural analysis and screening. Finally, the potential impact of these new systems on the output of small-molecule screening campaigns will be discussed.


2020 ◽  
Vol 60 (1) ◽  
pp. 219-240 ◽  
Author(s):  
Brandon M. Brown ◽  
Heesung Shim ◽  
Palle Christophersen ◽  
Heike Wulff

The three small-conductance calcium-activated potassium (KCa2) channels and the related intermediate-conductance KCa3.1 channel are voltage-independent K+ channels that mediate calcium-induced membrane hyperpolarization. When intracellular calcium increases in the channel vicinity, it calcifies the flexible N lobe of the channel-bound calmodulin, which then swings over to the S4-S5 linker and opens the channel. KCa2 and KCa3.1 channels are highly druggable and offer multiple binding sites for venom peptides and small-molecule blockers as well as for positive- and negative-gating modulators. In this review, we briefly summarize the physiological role of KCa channels and then discuss the pharmacophores and the mechanism of action of the most commonly used peptidic and small-molecule KCa2 and KCa3.1 modulators. Finally, we describe the progress that has been made in advancing KCa3.1 blockers and KCa2.2 negative- and positive-gating modulators toward the clinic for neurological and cardiovascular diseases and discuss the remaining challenges.


Sign in / Sign up

Export Citation Format

Share Document