Pyroelectric properties and X-ray photoelectron spectroscopic study of R.F. magnetron-sputtering-derived PZT thin films deposited on various interlayers

2006 ◽  
Vol 17 (2-4) ◽  
pp. 619-623 ◽  
Author(s):  
Chul-Ho Park ◽  
Mi-Sook Won ◽  
Chul-Su Lee ◽  
Won-Hyo Cha ◽  
Young-Gook Son
2006 ◽  
Vol 510-511 ◽  
pp. 1042-1045
Author(s):  
Chul Ho Park ◽  
Young Gook Son

The PZT thin film was deposited by R.F. Magnetron sputtering with Pb 1.1Zr0.53Ti0.47O3 target. When interlayers were inserted at the between PZT and Pt, The grain growth of the PZT thin films was considerably improved by various interlayers (PbO, TiO2, TiO2/PbO) and had low-processing temperature. Compared to the pure PZT thin films, pyroelectric properties of the PZT thin films inserted by interlayers were relatively measured high value. In particular, PZT thin film deposited on interlayer(PbO) was appeared the best pyroelectric properties (P=189.4μ C/㎠K, FD=12.7×10-6Pa-1/2, FV=0.018㎡/C) respectively. As a result of XPS depth profile analysis, both PZT thin film and interlayers were confirmed as independently existing layer respectively.


Surfaces ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 106-114
Author(s):  
Yannick Hermans ◽  
Faraz Mehmood ◽  
Kerstin Lakus-Wollny ◽  
Jan P. Hofmann ◽  
Thomas Mayer ◽  
...  

Thin films of ZnWO4, a promising photocatalytic and scintillator material, were deposited for the first time using a reactive dual magnetron sputtering procedure. A ZnO target was operated using an RF signal, and a W target was operated using a DC signal. The power on the ZnO target was changed so that it would match the sputtering rate of the W target operated at 25 W. The effects of the process parameters were characterized using optical spectroscopy, X-ray diffraction, and scanning electron microscopy, including energy dispersive X-ray spectroscopy as well as X-ray photoelectron spectroscopy. It was found that stoichiometric microcrystalline ZnWO4 thin films could be obtained, by operating the ZnO target during the sputtering procedure at a power of 55 W and by post-annealing the resulting thin films for at least 10 h at 600 °C. As FTO coated glass substrates were used, annealing led as well to the incorporation of Na, resulting in n+ doped ZnWO4 thin films.


MRS Advances ◽  
2016 ◽  
Vol 1 (39) ◽  
pp. 2711-2716 ◽  
Author(s):  
V. Vasilyev ◽  
J. Cetnar ◽  
B. Claflin ◽  
G. Grzybowski ◽  
K. Leedy ◽  
...  

ABSTRACTAlN thin film structures have many useful and practical piezoelectric and pyroelectric properties. The potential enhancement of the AlN piezo- and pyroelectric constants allows it to compete with more commonly used materials. For example, combination of AlN with ScN leads to new structural, electronic, and mechanical characteristics, which have been reported to substantially enhance the piezoelectric coefficients in solid-solution AlN-ScN compounds, compared to a pure AlN-phase material.In our work, we demonstrate that an analogous alloying approach results in considerable enhancement of the pyroelectric properties of AlN - ScN composites. Thin films of ScN, AlN and Al1-x ScxN (x = 0 – 1.0) were deposited on silicon (004) substrates using dual reactive sputtering in Ar/N2 atmosphere from Sc and Al targets. The deposited films were studied and compared using x-ray diffraction, XPS, SEM, and pyroelectric characterization. An up to 25% enhancement was observed in the pyroelectric coefficient (Pc = 0.9 µC /m2K) for Sc1-xAlxN thin films structures in comparison to pure AlN thin films (Pc = 0.71 µC/m2K). The obtained results suggest that Al1-x ScxN films could be a promising novel pyroelectric material and might be suitable for use in uncooled IR detectors.


2015 ◽  
Vol 833 ◽  
pp. 127-133
Author(s):  
Jie Yu ◽  
Jie Xing ◽  
Xiu Hua Chen ◽  
Wen Hui Ma ◽  
Rui Li ◽  
...  

La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) electrolyte thin films were fabricated on La0.7Sr0.3Cr0.5Mn0.5O2.75 (LSCM) porous anode substrates by Radio Frequency (RF) magnetron sputtering method. The compatibility between LSGM and LSCM was examined. Microstructures of LSGM thin films fabricated were observed by scanning electron microscope (SEM). The effect of substrate temperature on LSGM thin films was clarified by X-ray Diffraction (XRD). Deposition rate increases firstly at the range of 50°C~150°C, and then decreases at the range of 150°C ~300°C. After annealing, perovskite structure with the same growth orientation forms at different substrate temperature. Crystallite size decreases at first, to the minimum point at 150°C, then increases as substrate temperature rises.


2011 ◽  
Vol 239-242 ◽  
pp. 2752-2755
Author(s):  
Fan Ye ◽  
Xing Min Cai ◽  
Fu Ping Dai ◽  
Dong Ping Zhang ◽  
Ping Fan ◽  
...  

Transparent conductive Cu-In-O thin films were deposited by reactive DC magnetron sputtering. Two types of targets were used. The first was In target covered with a fan-shaped Cu plate of the same radius and the second was Cu target on which six In grains of 1.5mm was placed with equal distance between each other. The samples were characterized with scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), UV/VIS spectrophotometer, four-probe measurement etc. SEM shows that the surfaces of all the samples are very smooth. EDX shows that the samples contain Cu, In as well as O, and different targets result in different atomic ratios of Cu to In. A diffraction peak related to rhombohedra-centered In2O3(012) is observed in the XRD spectra of all the samples. For both the two targets, the transmittance decreases with the increase of O2flow rates. The direct optical band gap of all the samples is also estimated according to the transmittance curve. For both the two targets, different O2flow rates result in different sheet resistances and conductivities. The target of Cu on In shows more controllability in the composition and properties of Cu-In-O films.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1282 ◽  
Author(s):  
Zhao ◽  
Li ◽  
Ai ◽  
Wen

A kind of devices Pt/Ag/ZnO:Li/Pt/Ti with high resistive switching behaviors were prepared on a SiO2/Si substrate by using magnetron sputtering method and mask technology, composed of a bottom electrode (BE) of Pt/Ti, a resistive switching layer of ZnO:Li thin film and a top electrode (TE) of Pt/Ag. To determine the crystal lattice structure and the Li-doped concentration in the resulted ZnO thin films, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) tests were carried out. Resistive switching behaviors of the devices with different thicknesses of Li-doped ZnO thin films were studied at different set and reset voltages based on analog and digital resistive switching characteristics. At room temperature, the fabricated devices represent stable bipolar resistive switching behaviors with a low set voltage, a high switching current ratio and a long retention up to 104 s. In addition, the device can sustain an excellent endurance more than 103 cycles at an applied pulse voltage. The mechanism on how the thicknesses of the Li-doped ZnO thin films affect the resistive switching behaviors was investigated by installing conduction mechanism models. This study provides a new strategy for fabricating the resistive random access memory (ReRAM) device used in practice.


Author(s):  
Ihor Petrovych Studenyak ◽  
Andrii Vasyliovych Bendak ◽  
Mykola Oleksiyovych Vizenko ◽  
Vitalii Yuriyovych Izai ◽  
Andrii Mykhailovych Solomon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document