Electrical and mechanical properties of aluminosilicate inorganic polymer composites with carbon nanotubes

2009 ◽  
Vol 44 (11) ◽  
pp. 2851-2857 ◽  
Author(s):  
Kenneth J. D. MacKenzie ◽  
Matthew J. Bolton
2021 ◽  
Vol 10 (1) ◽  
pp. 20200159
Author(s):  
Deepa Bedi ◽  
Sumit Sharma ◽  
Saurabh Kango ◽  
Nitin Sharma ◽  
Pramod Rakt Patel

2017 ◽  
Vol 51 (12) ◽  
pp. 1693-1701 ◽  
Author(s):  
EA Zakharychev ◽  
EN Razov ◽  
Yu D Semchikov ◽  
NS Zakharycheva ◽  
MA Kabina

This paper investigates the structure, length, and percentage of functional groups of multi-walled carbon nanotubes (CNT) depending on the time taken for functionalization in HNO3 and H2SO4 mixture. The carbon nanotube content and influence of functionalization time on mechanical properties of polymer composite materials based on epoxy matrix are studied. The extreme dependencies of mechanical properties of carbon nanotube functionalization time of polymer composites were established. The rise in tensile strength of obtained composites reaches 102% and elastic modulus reaches 227% as compared to that of unfilled polymer. The composites exhibited best mechanical properties by including carbon nanotube with 0.5 h functionalization time.


2010 ◽  
Vol 24 (15n16) ◽  
pp. 2459-2465 ◽  
Author(s):  
R. J. T. LIN ◽  
D. BHATTACHARYYA ◽  
S. FAKIROV

The concept of microfibrillar composite (MFC) has been used to create a new type of polymer composites, in which the reinforcing microfibrils are loaded with carbon nanotubes (CNT). Polyamide 66 (PA66) has been melt blended with polypropylene in a twin screw extruder with and without CNT, and thereafter cold drawn to create a fibrillar state as well as to align the CNT in the PA66 microfibrils. The drawn bristles were compression moulded at 180°C to prepare MFC plates. The scanning electron microscope (SEM) observations indicate near perfect distribution of CNT in the reinforcing PA66 microfibrils. Although the fibrillated PA66 is able to improve the tensile stiffness and strength as expected from the MFC structure, the incorporation of CNT does not exhibit any further enhancing effect. It rather adversely affects the mechanical properties due to poor interface adhesion between the matrix and the reinforcing microfibrils with the presence of CNT, as demonstrated by SEM. However, the resulting highly aligned CNT within the MFC are expected to affect the physical and functional properties of these composites.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 110
Author(s):  
Chuang Zhang ◽  
Long Li ◽  
Yuanhang Xin ◽  
Jiaqi You ◽  
Jing Zhang ◽  
...  

In this study, which was inspired by mussel-biomimetic bonding research, carbon nanotubes (CNTs) were interfacially modified with polydopamine (PDA) to prepare a novel nano-filler (CNTs@PDA). The structure and properties of the CNTs@PDA were studied using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). The CNTs and the CNTs@PDA were used as nanofillers and melt-blended into trans-1,4 polyisoprene (TPI) to create shape-memory polymer composites. The thermal stability, mechanical properties, and shape-memory properties of the TPI/CNTs and TPI/CNTs@PDA composites were systematically studied. The results demonstrate that these modifications enhanced the interfacial interaction, thermal stability, and mechanical properties of TPI/CNTs@PDA composites while maintaining shape-memory performance.


2021 ◽  
Vol 58 (2) ◽  
pp. 41-47
Author(s):  
Razvan Petre ◽  
Teodora Zecheru ◽  
Raluca Ginghina

Due to its chemical and mechanical properties, polyurea gains more and more interest in military applications. In this study, polyurea and carbon nanotubes were processed as coating polymer composites for ballistic plates and/or packages, in order to increase their protection potential, meanwhile maintaining an appropriate weight and an economic accessibility. In this respect, the composite material was layered on various commercially-available materials and various thicknesses and further, the performances of the products obtained were tested in order to assess their behavior against traumas produced by shockwave, blunt, shooting and fragment.


Sign in / Sign up

Export Citation Format

Share Document