Enhancement of thermal and mechanical performances of epoxy nanocomposite materials based on graphene oxide grafted by liquid crystalline monomer with Schiff base

2019 ◽  
Vol 55 (8) ◽  
pp. 3712-3727 ◽  
Author(s):  
Bing Hu ◽  
Yue-hua Cong ◽  
Bao-yan Zhang ◽  
Lei Zhang ◽  
Yu Shen ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Tuan Anh Nguyen ◽  
Thi Thu Trang Bui

In this study, nanoclay I.30E and multiwalled carbon nanotubes (MWCNT) were hybridized with graphene oxide (GO) on Epikote 240 epoxy resin. Research results show that the hybridization between 0.5 wt.% GO with 1 or 3 wt.% nanoclay and 0.05 wt.% MWCNT has better mechanical properties and flame-retardant properties than the component materials. The combination of epoxy nanocomposite materials with flame-retardant additives such as nanoclay, MWCNT, and GO leads to improving flame-retardant and mechanical properties. Flame-retardant materials have no environmental problems and are nontoxic. Therefore, the flame-retardant additives studied in this work have great potential to become one of the promising flame-retardant hybrid materials. The study also showed that the result of the combination, the hybridization between the three components (nanoclay, MWCNT, and GO) synergized the mechanisms of fire resistance, creating insulating barriers, preventing objects from entering material exposed to heat and oxygen in the air.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 585
Author(s):  
Ariel Ma ◽  
Jian Yu ◽  
William Uspal

Natural evaporation has recently come under consideration as a viable source of renewable energy. Demonstrations of the validity of the concept have been reported for devices incorporating carbon-based nanocomposite materials. In this study, we investigated the possibility of using polymer thin films to generate electricity from natural evaporation. We considered a polymeric system based on polyvinylidene fluoride (PVDF). Porous PVDF films were created by incorporating a variety of nanocomposite materials into the polymer structure through a simple mixing procedure. Three nanocomposite materials were considered: carbon nanotubes, graphene oxide, and silica. The evaporation-induced electricity generation was confirmed experimentally under various ambient conditions. Among the nanocomposite materials considered, mesoporous silica (SBA-15) was found to outperform the other two materials in terms of open-circuit voltage, and graphene oxide generated the highest short-circuit current. It was found that the nanocomposite material content in the PVDF film plays an important role: on the one hand, if particles are too few in number, the number of channels will be insufficient to support a strong capillary flow; on the other hand, an excessive number of particles will suppress the flow due to excessive water absorption underneath the surface. We show that the device can be modeled as a simple circuit powered by a current source with excellent agreement between the theoretical predictions and experimental data.


2014 ◽  
Vol 4 (12) ◽  
pp. 4396-4405 ◽  
Author(s):  
Teo Peik-See ◽  
Alagarsamy Pandikumar ◽  
Lim Hong Ngee ◽  
Huang Nay Ming ◽  
Chia Chin Hua

Synthesis of magnetically separable rGO/Fe3O4nanocomposite materials for environmental remediationviathe photocatalytic degradation of methylene blue.


2017 ◽  
Vol 3 ◽  
pp. 47-50 ◽  
Author(s):  
Rajesh Kumar Prusty ◽  
Dinesh Kumar Rathore ◽  
Sweta Sahoo ◽  
Varsha Parida ◽  
Bankim Chandra Ray

Sign in / Sign up

Export Citation Format

Share Document