Selective metallization on additive manufactured polymer for fabrication of integrated device

Author(s):  
Fuxi Liu ◽  
Deqiao Xie ◽  
Chen Jiao ◽  
Dezhi Bai ◽  
Haidong Wu ◽  
...  
Keyword(s):  
2003 ◽  
Vol 766 ◽  
Author(s):  
Kenneth Foster ◽  
Joost Waeterloos ◽  
Don Frye ◽  
Steve Froelicher ◽  
Mike Mills

AbstractThe electronics industry, in a continual drive for improved integrated device performance, is seeking increasingly lower dielectric constants (k) of the insulators that are used as interlayer dielectric (ILD) for advanced logic interconnects. As the industry continually seeks a stepwise reduction of the “effective” dielectric constant (keff), simple extendibility, leads to the consideration of the highest performance possible, namely air bridge technology. In this paper we will discuss requirements, integration schemes and properties for a novel class of materials that has been developed as part of an advanced technology probe into air bridge architecture. We will compare and contrast these potential technology offerings with other existing dense and porous ILD integration options, and show that the choice is neither trivial nor obvious.


Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 177 ◽  
Author(s):  
Zengming Zhang ◽  
Shuhao Zhao ◽  
Fei Hu ◽  
Guangpu Yang ◽  
Juan Li ◽  
...  

The sensitive quantification of low-abundance nucleic acids holds importance for a range of clinical applications and biological studies. In this study, we describe a facile microfluidic chip for absolute DNA quantifications based on the digital loop-mediated isothermal amplification (digital LAMP) method. This microfluidic chip integrates a cross-flow channel for droplet generation with a micro-cavity for droplet tiling. DNA templates in the LAMP reagent were divided into ~20,000 water-in-oil droplets at the cross-flow channel. The droplets were then tiled in the micro-cavity for isothermal amplification and fluorescent detection. Different from the existing polydimethylsiloxane (PDMS) microfluidic chips, this study incorporates gold nanoparticles (AuNPs) into PDMS substrate through silica coating and dodecanol modification. The digital LAMP chip prepared by AuNPs-PDMS combines the benefits of the microstructure manufacturing performance of PDMS with the light-to-heat conversion advantages of AuNPs. Upon illumination with a near infrared (NIR) LED, the droplets were stably and efficiently heated by the AuNPs in PDMS. We further introduce an integrated device with a NIR heating unit and a fluorescent detection unit. The system could detect HBV (hepatitis B virus)-DNA at a concentration of 1 × 101 to 1 × 104 copies/μL. The LED-driven digital LAMP chip and the integrated device; therefore, demonstrate high accuracy and excellent performance for the absolute quantification of low-abundance nucleic acids, showing the advantages of integration, miniaturization, cost, and power consumption.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Francesco Morichetti ◽  
Maziyar Milanizadeh ◽  
Matteo Petrini ◽  
Francesco Zanetto ◽  
Giorgio Ferrari ◽  
...  

AbstractFlexible optical networks require reconfigurable devices with operation on a wavelength range of several tens of nanometers, hitless tuneability (i.e. transparency to other channels during reconfiguration), and polarization independence. All these requirements have not been achieved yet in a single photonic integrated device and this is the reason why the potential of integrated photonics is still largely unexploited in the nodes of optical communication networks. Here we report on a fully-reconfigurable add-drop silicon photonic filter, which can be tuned well beyond the extended C-band (almost 100 nm) in a complete hitless (>35 dB channel isolation) and polarization transparent (1.2 dB polarization dependent loss) way. This achievement is the result of blended strategies applied to the design, calibration, tuning and control of the device. Transmission quality assessment on dual polarization 100 Gbit/s (QPSK) and 200 Gbit/s (16-QAM) signals demonstrates the suitability for dynamic bandwidth allocation in core networks, backhaul networks, intra- and inter-datacenter interconnects.


2021 ◽  
Vol 692 (3) ◽  
pp. 032098
Author(s):  
Xinzhe Shao ◽  
Jiawen Wang ◽  
Xuewei Cao ◽  
Zhen Yan ◽  
Bingjie Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document