scholarly journals Research progress on the biological modifications of implant materials in 3D printed intervertebral fusion cages

Author(s):  
Shan Li ◽  
Yifan Huan ◽  
Bin Zhu ◽  
Haoxiang Chen ◽  
Ming Tang ◽  
...  

AbstractAnterior spine decompression and reconstruction with bone grafts and fusion is a routine spinal surgery. The intervertebral fusion cage can maintain intervertebral height and provide a bone graft window. Titanium fusion cages are the most widely used metal material in spinal clinical applications. However, there is a certain incidence of complications in clinical follow-ups, such as pseudoarticulation formation and implant displacement due to nonfusion of bone grafts in the cage. With the deepening research on metal materials, the properties of these materials have been developed from being biologically inert to having biological activity and biological functionalization, promoting adhesion, cell differentiation, and bone fusion. In addition, 3D printing, thin-film, active biological material, and 4D bioprinting technology are also being used in the biofunctionalization and intelligent advanced manufacturing processes of implant devices in the spine. This review focuses on the biofunctionalization of implant materials in 3D printed intervertebral fusion cages. The surface modifications of implant materials in metal endoscopy, material biocompatibility, and bioactive functionalizationare summarized. Furthermore, the prospects and challenges of the biofunctionalization of implant materials in spinal surgery are discussed.

2017 ◽  
Vol 26 (4) ◽  
pp. 513-518 ◽  
Author(s):  
Ralph J. Mobbs ◽  
Marc Coughlan ◽  
Robert Thompson ◽  
Chester E. Sutterlin ◽  
Kevin Phan

OBJECTIVE There has been a recent renewed interest in the use and potential applications of 3D printing in the assistance of surgical planning and the development of personalized prostheses. There have been few reports on the use of 3D printing for implants designed to be used in complex spinal surgery. METHODS The authors report 2 cases in which 3D printing was used for surgical planning as a preoperative mold, and for a custom-designed titanium prosthesis: one patient with a C-1/C-2 chordoma who underwent tumor resection and vertebral reconstruction, and another patient with a custom-designed titanium anterior fusion cage for an unusual congenital spinal deformity. RESULTS In both presented cases, the custom-designed and custom-built implants were easily slotted into position, which facilitated the surgery and shortened the procedure time, avoiding further complex reconstruction such as harvesting rib or fibular grafts and fashioning these grafts intraoperatively to fit the defect. Radiological follow-up for both cases demonstrated successful fusion at 9 and 12 months, respectively. CONCLUSIONS These cases demonstrate the feasibility of the use of 3D modeling and printing to develop personalized prostheses and can ease the difficulty of complex spinal surgery. Possible future directions of research include the combination of 3D-printed implants and biologics, as well as the development of bioceramic composites and custom implants for load-bearing purposes.


Author(s):  
E K Nezhurina ◽  
P A Karalkin ◽  
V S Komlev ◽  
I K Sviridova ◽  
V A Kirsanova ◽  
...  

Chemosensors ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 317
Author(s):  
Zachary Brounstein ◽  
Jarrod Ronquillo ◽  
Andrea Labouriau

Eight chromophoric indicators are incorporated into Sylgard 184 to develop sensors that are fabricated either by traditional methods such as casting or by more advanced manufacturing techniques such as 3D printing. The sensors exhibit specific color changes when exposed to acidic species, basic species, or elevated temperatures. Additionally, material properties are investigated to assess the chemical structure, Shore A Hardness, and thermal stability. Comparisons between the casted and 3D printed sensors show that the sensing devices fabricated with the advanced manufacturing technique are more efficient because the color changes are more easily detected.


2021 ◽  
Author(s):  
Alessia Longoni ◽  
Jun Li ◽  
Gabriella C.J. Lindberg ◽  
Jelena Rnjak-Kovacina ◽  
Lyn M. Wise ◽  
...  

Abstract There remains a critical need to develop new technologies and materials that can meet the demands of treating large bone defects. The advancement of 3-dimensional (3D) printing technologies has allowed the creation of personalized and customized bone grafts, with specific control in both macro- and micro-architecture, and desired mechanical properties. Nevertheless, the biomaterials used for the production of these bone grafts often possess poor biological properties. The incorporation of growth factors (GFs), which are the natural orchestrators of the physiological healing process, into 3D printed bone grafts, represents a promising strategy to achieve the bioactivity required to enhance bone regeneration. In this review, the possible strategies used to incorporate GFs to 3D printed constructs are presented with a specific focus on bone regeneration. In particular, the strengths and limitations of different methods, such as physical and chemical cross-linking, which are currently used to incorporate GFs to the engineered constructs are critically reviewed. Different strategies used to present one or more GFs to achieve simultaneous angiogenesis and vasculogenesis for enhanced bone regeneration are also covered in this review. In addition, the possibility of combining several manufacturing approaches to fabricate hybrid constructs, which better mimic the complexity of biological niches, is presented. Finally, the clinical relevance of these approaches and the future steps that should be taken are discussed.


2020 ◽  
Vol 10 (9) ◽  
pp. 3020 ◽  
Author(s):  
Ali Zolfagharian ◽  
Akif Kaynak ◽  
Mahdi Bodaghi ◽  
Abbas Z. Kouzani ◽  
Saleh Gharaie ◽  
...  

Building on the recent progress of four-dimensional (4D) printing to produce dynamic structures, this study aimed to bring this technology to the next level by introducing control-based 4D printing to develop adaptive 4D-printed systems with highly versatile multi-disciplinary applications, including medicine, in the form of assisted soft robots, smart textiles as wearable electronics and other industries such as agriculture and microfluidics. This study introduced and analysed adaptive 4D-printed systems with an advanced manufacturing approach for developing stimuli-responsive constructs that organically adapted to environmental dynamic situations and uncertainties as nature does. The adaptive 4D-printed systems incorporated synergic integration of three-dimensional (3D)-printed sensors into 4D-printing and control units, which could be assembled and programmed to transform their shapes based on the assigned tasks and environmental stimuli. This paper demonstrates the adaptivity of these systems via a combination of proprioceptive sensory feedback, modeling and controllers, as well as the challenges and future opportunities they present.


2018 ◽  
Vol 24 (5) ◽  
pp. 255-262 ◽  
Author(s):  
Kang-Gon Lee ◽  
Kang-Sik Lee ◽  
Yu-Jeoung Kang ◽  
Jong-Hyun Hwang ◽  
Se-Hwan Lee ◽  
...  

2016 ◽  
Vol 6 (1_suppl) ◽  
pp. s-0036-1582876-s-0036-1582876
Author(s):  
Mark M. Levy ◽  
Julien Rigal ◽  
Robert Morrison ◽  
Jean Charles Le Huec ◽  
Klaus J. Schnake

Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 156 ◽  
Author(s):  
Mingshen Li ◽  
Chaoqun Zhang ◽  
Dayong Wang ◽  
Li Zhou ◽  
Daniel Wellmann ◽  
...  

Aluminum (Al) and copper (Cu) have been widely used in many industrial fields thanks to their good plasticity, high thermal conductivity and excellent electrical conductivity. An effective joining of dissimilar Al and Cu materials can make full use of the special characteristics of these two metals. Friction stir spot welding (FSSW), as an efficient solid-state welding method suitable for joining of dissimilar metal materials, has great prospects in future industrial applications. In this paper, the FSSW studies on Al-Cu dissimilar materials are reviewed. The research progress and current status of Al-Cu FSSW are reviewed with respect to tool features, macroscopic characteristics of welded joints, microstructures, defects in welds and mechanical properties of joints. In addition, some suggestions on further study are put forward in order to promote the development and progress of Al-Cu FSSW studies in several respects: material flow, thermal history, addition of intermediate layer, auxiliary methods and functionalization of Al-Cu FSSW joint.


Sign in / Sign up

Export Citation Format

Share Document