scholarly journals The utility of 3D printing for surgical planning and patient-specific implant design for complex spinal pathologies: case report

2017 ◽  
Vol 26 (4) ◽  
pp. 513-518 ◽  
Author(s):  
Ralph J. Mobbs ◽  
Marc Coughlan ◽  
Robert Thompson ◽  
Chester E. Sutterlin ◽  
Kevin Phan

OBJECTIVE There has been a recent renewed interest in the use and potential applications of 3D printing in the assistance of surgical planning and the development of personalized prostheses. There have been few reports on the use of 3D printing for implants designed to be used in complex spinal surgery. METHODS The authors report 2 cases in which 3D printing was used for surgical planning as a preoperative mold, and for a custom-designed titanium prosthesis: one patient with a C-1/C-2 chordoma who underwent tumor resection and vertebral reconstruction, and another patient with a custom-designed titanium anterior fusion cage for an unusual congenital spinal deformity. RESULTS In both presented cases, the custom-designed and custom-built implants were easily slotted into position, which facilitated the surgery and shortened the procedure time, avoiding further complex reconstruction such as harvesting rib or fibular grafts and fashioning these grafts intraoperatively to fit the defect. Radiological follow-up for both cases demonstrated successful fusion at 9 and 12 months, respectively. CONCLUSIONS These cases demonstrate the feasibility of the use of 3D modeling and printing to develop personalized prostheses and can ease the difficulty of complex spinal surgery. Possible future directions of research include the combination of 3D-printed implants and biologics, as well as the development of bioceramic composites and custom implants for load-bearing purposes.

Author(s):  
Arivazhagan Pugalendhi ◽  
◽  
SenthilMurugan Arumugam ◽  
Rajesh Ranganathan ◽  
Sivakumar Ganesan ◽  
...  

Evolution of 3D printing from medical image datasets are escalating and has widespread in healthcare applications such as anatomical models, surgical guides, and customized implants. In 3D printing, solid objects are fabricated by the frequently added the thin layers of material as per the digital model. This paper demonstrates the fabrication of 3D printed patient-specific bone models of leg and ankle foot from Digital Imaging and Communications in Medicine (DICOM) files. Processing of DICOM file is prepared by D2P (DICOM to PRINT) software and physical models are produced by Stratasys uPrint 3D printer. This 3D printed anatomical model eliminates the requirement of actual human bones, significance of preservation and mistakes in assembly of bones. The results of the study not only encourage education, surgical planning and validating medical devices but stimulate exciting innovations.


2020 ◽  
Vol 10 (24) ◽  
pp. 8984
Author(s):  
Rafael Moreta-Martinez ◽  
José Antonio Calvo-Haro ◽  
Rubén Pérez-Mañanes ◽  
Mónica García-Sevilla ◽  
Lydia Mediavilla-Santos ◽  
...  

Surgical navigation techniques have shown potential benefits in orthopedic oncologic surgery. However, the translation of these results to acral tumor resection surgeries is challenging due to the large number of joints with complex movements of the affected areas (located in distal extremities). This study proposes a surgical workflow that combines an intraoperative open-source navigation software, based on a multi-camera tracking, with desktop three-dimensional (3D) printing for accurate navigation of these tumors. Desktop 3D printing was used to fabricate patient-specific 3D printed molds to ensure that the distal extremity is in the same position both in preoperative images and during image-guided surgery (IGS). The feasibility of the proposed workflow was evaluated in two clinical cases (soft-tissue sarcomas in hand and foot). The validation involved deformation analysis of the 3D-printed mold after sterilization, accuracy of the system in patient-specific 3D-printed phantoms, and feasibility of the workflow during the surgical intervention. The sterilization process did not lead to significant deformations of the mold (mean error below 0.20 mm). The overall accuracy of the system was 1.88 mm evaluated on the phantoms. IGS guidance was feasible during both surgeries, allowing surgeons to verify enough margin during tumor resection. The results obtained have demonstrated the viability of combining open-source navigation and desktop 3D printing for acral tumor surgeries. The suggested framework can be easily personalized to any patient and could be adapted to other surgical scenarios.


Author(s):  
Simona Celi ◽  
Emanuele Gasparotti ◽  
Katia Capellini ◽  
Emanuele Vignali ◽  
Benigno Marco Fanni ◽  
...  

Background: 3D printing represents an emerging technology in the field of cardiovascular medicine. 3D printing can help to perform a better analysis of complex anatomies to optimize intervention planning. Methods: A systematic review was performed to illustrate the 3D printing technology and to describe the workflow to obtain 3D printed models from patient-specific images. Examples from our laboratory of the benefit of 3D printing in planning interventions were also reported. Results: 3D printing technique is reliable when applied to high-quality 3D image data (CTA, CMR, 3D echography) but it still need the involvement of expert operators for image segmentation and mesh refinement. 3D printed models could be useful in interventional planning, although prospective studies with comprehensive and clinically meaningful endpoints are required to demonstrate the clinical utility. Conclusion: 3D printing can be used to improve anatomy understanding and surgical planning.


2016 ◽  
Vol 77 (S 02) ◽  
Author(s):  
Hassan Othman ◽  
Sam Evans ◽  
Daniel Morris ◽  
Saty Bhatia ◽  
Caroline Hayhurst

Author(s):  
E. Nocerino ◽  
F. Remondino ◽  
F. Uccheddu ◽  
M. Gallo ◽  
G. Gerosa

In the last years, cardiovascular diagnosis, surgical planning and intervention have taken advantages from 3D modelling and rapid prototyping techniques. The starting data for the whole process is represented by medical imagery, in particular, but not exclusively, computed tomography (CT) or multi-slice CT (MCT) and magnetic resonance imaging (MRI). On the medical imagery, regions of interest, i.e. heart chambers, valves, aorta, coronary vessels, etc., are segmented and converted into 3D models, which can be finally converted in physical replicas through 3D printing procedure. In this work, an overview on modern approaches for automatic and semiautomatic segmentation of medical imagery for 3D surface model generation is provided. The issue of accuracy check of surface models is also addressed, together with the critical aspects of converting digital models into physical replicas through 3D printing techniques. A patient-specific 3D modelling and printing procedure (Figure 1), for surgical planning in case of complex heart diseases was developed. The procedure was applied to two case studies, for which MCT scans of the chest are available. In the article, a detailed description on the implemented patient-specific modelling procedure is provided, along with a general discussion on the potentiality and future developments of personalized 3D modelling and printing for surgical planning and surgeons practice.


2021 ◽  
Vol 7 ◽  
Author(s):  
Jasamine Coles-Black ◽  
Damien Bolton ◽  
Jason Chuen

Introduction: 3D printed patient-specific vascular phantoms provide superior anatomical insights for simulating complex endovascular procedures. Currently, lack of exposure to the technology poses a barrier for adoption. We offer an accessible, low-cost guide to producing vascular anatomical models using routine CT angiography, open source software packages and a variety of 3D printing technologies.Methods: Although applicable to all vascular territories, we illustrate our methodology using Abdominal Aortic Aneurysms (AAAs) due to the strong interest in this area. CT aortograms acquired as part of routine care were converted to representative patient-specific 3D models, and then printed using a variety of 3D printing technologies to assess their material suitability as aortic phantoms. Depending on the technology, phantoms cost $20–$1,000 and were produced in 12–48 h. This technique was used to generate hollow 3D printed thoracoabdominal aortas visible under fluoroscopy.Results: 3D printed AAA phantoms were a valuable addition to standard CT angiogram reconstructions in the simulation of complex cases, such as short or very angulated necks, or for positioning fenestrations in juxtarenal aneurysms. Hollow flexible models were particularly useful for device selection and in planning of fenestrated EVAR. In addition, these models have demonstrated utility other settings, such as patient education and engagement, and trainee and anatomical education. Further study is required to establish a material with optimal cost, haptic and fluoroscopic fidelity.Conclusion: We share our experiences and methodology for developing inexpensive 3D printed vascular phantoms which despite material limitations, successfully mimic the procedural challenges encountered during live endovascular surgery. As the technology continues to improve, 3D printed vascular phantoms have the potential to disrupt how endovascular procedures are planned and taught.


Symbrachydactyly is a genetical problem occurred to newborn where the newborn experienced underdeveloped or shorten fingers. This condition will limit their normal as even a simple task of holding an item or pushing a button. A device is needed to help them gain a better life. The aim of this project is to fabricate a customized prosthesis hand using 3D printing technology at minimum cost. The proposed prosthetic was not embedded with any electrical component. The patient can only use the wrist to control the prosthetic part which is the prosthetic fingers. The prosthetic hand was also being developed with the patient specific features, which the initial design stage was adapted from a person’s hand geometry using a 3D scanner. Next the model of the prosthesis was analyzed computationally to predict the performance of the product. Different material properties are considered in the analysis to present Polylactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) materials. Then, the prosthesis was fabricated using the 3D printing. The results suggested that PLA material indicated better findings and further be fabricated.


Author(s):  
Chia-An Wu ◽  
Andrew Squelch ◽  
Zhonghua Sun

Aim: To determine a printing material that has both elastic property and radiology equivalence close to real aorta for simulation of endovascular stent graft repair of aortic dissection. Background: With the rapid development of three-dimensional (3D) printing technology, a patient-specific 3D printed model is able to help surgeons to make better treatment plan for Type B aortic dissection patients. However, the radiological properties of most 3D printing materials have not been well characterized. This study aims to investigate the appropriate materials for printing human aorta with mechanical and radiological properties similar to the real aortic computed tomography (CT) attenuation. Objective: Quantitative assessment of CT attenuation of different materials used in 3D printed models of aortic dissection for developing patient-specific 3D printed aorta models to simulate type B aortic dissection. Method: A 25-mm length of aorta model was segmented from a patient’s image dataset with diagnosis of type B aortic dissection. Four different elastic commercial 3D printing materials, namely Agilus A40 and A50, Visijet CE-NT A30 and A70 were selected and printed with different hardness. Totally four models were printed out and conducted CT scanned twice on a 192-slice CT scanner using the standard aortic CT angiography protocol, with and without contrast inside the lumen.Five reference points with region of interest (ROI) of 1.77 mm2 were selected at the aortic wall and intimal flap and their Hounsfield units (HU) were measured and compared with the CT attenuation of original CT images. The comparison between the patient’s aorta and models was performed through a paired-sample t-test to determine if there is any significant difference. Result: The mean CT attenuation of aortic wall of the original CT images was 80.7 HU. Analysis of images without using contrast medium showed that the material of Agilus A50 produced the mean CT attenuation of 82.6 HU, which is similar to that of original CT images. The CT attenuation measured at images acquired with other three materials was significantly lower than that of original images (p<0.05). After adding contrast medium, Visijet CE-NT A30 had an average CT attenuation of 90.6 HU, which is close to that of the original images with statistically significant difference (p>0.05). In contrast, the CT attenuation measured at images acquired with other three materials (Agilus A40, A50 and Visiject CE-NT A70) was 129 HU, 135 HU and 129.6 HU, respectively, which is significantly higher than that of original CT images (p<0.05). Conclusion: Both Visijet CE-NT and Agilus have tensile strength and elongation close to real patient’s tissue properties producing similar CT attenuation. Visijet CE-NT A30 is considered the appropriate material for printing aorta to simulate contrast-enhanced CT imaging of type B aortic dissection. Due to lack of body phantom in the experiments, further research with simulation of realistic anatomical body environment should be conducted.


2020 ◽  
Vol 7 (1) ◽  
pp. 7 ◽  
Author(s):  
Elisa Mussi ◽  
Federico Mussa ◽  
Chiara Santarelli ◽  
Mirko Scagnet ◽  
Francesca Uccheddu ◽  
...  

In brain tumor surgery, an appropriate and careful surgical planning process is crucial for surgeons and can determine the success or failure of the surgery. A deep comprehension of spatial relationships between tumor borders and surrounding healthy tissues enables accurate surgical planning that leads to the identification of the optimal and patient-specific surgical strategy. A physical replica of the region of interest is a valuable aid for preoperative planning and simulation, allowing the physician to directly handle the patient’s anatomy and easily study the volumes involved in the surgery. In the literature, different anatomical models, produced with 3D technologies, are reported and several methodologies were proposed. Many of them share the idea that the employment of 3D printing technologies to produce anatomical models can be introduced into standard clinical practice since 3D printing is now considered to be a mature technology. Therefore, the main aim of the paper is to take into account the literature best practices and to describe the current workflow and methodology used to standardize the pre-operative virtual and physical simulation in neurosurgery. The main aim is also to introduce these practices and standards to neurosurgeons and clinical engineers interested in learning and implementing cost-effective in-house preoperative surgical planning processes. To assess the validity of the proposed scheme, four clinical cases of preoperative planning of brain cancer surgery are reported and discussed. Our preliminary results showed that the proposed methodology can be applied effectively in the neurosurgical clinical practice both in terms of affordability and in terms of simulation realism and efficacy.


2020 ◽  
Vol 13 (4) ◽  
pp. 329-333
Author(s):  
Maurice Y. Mommaerts ◽  
Paul R. Depauw ◽  
Erik Nout

Study Design: Inlay cranioplasties following partial craniectomy in tumor or trauma cases and onlay cranioplasties for reconstructions of residual developmental skull anomalies are frequently performed using CAD-CAM techniques. Objective: In this case series, we present a novel cranial implant design, being a combination of 3D-printed titanium grade 23 and calcium phosphate paste (CeTi). Methods: The titanium patient-specific implant, manufactured using selective laser melting, has a latticed border with interconnected micropores. The cranioplasty is miniscrew fixed and its border zone subsequently partially filled with calcium phosphate paste to promote osteoinduction and osteoconduction. From April 2017 to April 2019, 8 patients have been treated with such a CeTi implant. The inlay cranioplasties were each time revision surgeries of complicated cases. Results: All implants were successful after a limited follow-up time (range 18-42 months). There were no dehiscences and no infections, and no complaints of thermal conduction. Conclusions: The proposed CeTi cranial implant combines the strength of titanium implants with the biological integration potential of ceramic implants and seems particularly resistant to infection, probably due to the biofunctionalized titanium surface and the antimicrobial activity of elevated intracellular free calcium levels.


Sign in / Sign up

Export Citation Format

Share Document