scholarly journals Physicochemical and osteoplastic characteristics of 3D printed bone grafts based on synthetic calcium phosphates and natural polymers

Author(s):  
E K Nezhurina ◽  
P A Karalkin ◽  
V S Komlev ◽  
I K Sviridova ◽  
V A Kirsanova ◽  
...  
2021 ◽  
Vol 122 ◽  
pp. 111928
Author(s):  
Eduardo H. Backes ◽  
Emanuel M. Fernandes ◽  
Gabriela S. Diogo ◽  
Catarina F. Marques ◽  
Tiago H. Silva ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 353
Author(s):  
Yanting Han ◽  
Qianqian Wei ◽  
Pengbo Chang ◽  
Kehui Hu ◽  
Oseweuba Valentine Okoro ◽  
...  

Hydroxyapatite (HA) and HA-based nanocomposites have been recognized as ideal biomaterials in hard tissue engineering because of their compositional similarity to bioapatite. However, the traditional HA-based nanocomposites fabrication techniques still limit the utilization of HA in bone, cartilage, dental, applications, and other fields. In recent years, three-dimensional (3D) printing has been shown to provide a fast, precise, controllable, and scalable fabrication approach for the synthesis of HA-based scaffolds. This review therefore explores available 3D printing technologies for the preparation of porous HA-based nanocomposites. In the present review, different 3D printed HA-based scaffolds composited with natural polymers and/or synthetic polymers are discussed. Furthermore, the desired properties of HA-based composites via 3D printing such as porosity, mechanical properties, biodegradability, and antibacterial properties are extensively explored. Lastly, the applications and the next generation of HA-based nanocomposites for tissue engineering are discussed.


2018 ◽  
Vol 74 (a2) ◽  
pp. e61-e62
Author(s):  
Jaime Gómez-Morales ◽  
Luis Antonio González-Ramírez ◽  
Youen Vitry ◽  
Pierre Lambert ◽  
Isaac Rodríguez-Ruiz

2021 ◽  
Author(s):  
Alessia Longoni ◽  
Jun Li ◽  
Gabriella C.J. Lindberg ◽  
Jelena Rnjak-Kovacina ◽  
Lyn M. Wise ◽  
...  

Abstract There remains a critical need to develop new technologies and materials that can meet the demands of treating large bone defects. The advancement of 3-dimensional (3D) printing technologies has allowed the creation of personalized and customized bone grafts, with specific control in both macro- and micro-architecture, and desired mechanical properties. Nevertheless, the biomaterials used for the production of these bone grafts often possess poor biological properties. The incorporation of growth factors (GFs), which are the natural orchestrators of the physiological healing process, into 3D printed bone grafts, represents a promising strategy to achieve the bioactivity required to enhance bone regeneration. In this review, the possible strategies used to incorporate GFs to 3D printed constructs are presented with a specific focus on bone regeneration. In particular, the strengths and limitations of different methods, such as physical and chemical cross-linking, which are currently used to incorporate GFs to the engineered constructs are critically reviewed. Different strategies used to present one or more GFs to achieve simultaneous angiogenesis and vasculogenesis for enhanced bone regeneration are also covered in this review. In addition, the possibility of combining several manufacturing approaches to fabricate hybrid constructs, which better mimic the complexity of biological niches, is presented. Finally, the clinical relevance of these approaches and the future steps that should be taken are discussed.


2018 ◽  
Vol 24 (5) ◽  
pp. 255-262 ◽  
Author(s):  
Kang-Gon Lee ◽  
Kang-Sik Lee ◽  
Yu-Jeoung Kang ◽  
Jong-Hyun Hwang ◽  
Se-Hwan Lee ◽  
...  

2017 ◽  
Vol 24 (2) ◽  
pp. 48-56
Author(s):  
P. A Karalkin ◽  
N. S Sergeeva ◽  
V. S Komlev ◽  
I. K Sviridova ◽  
V. A Kirsanova ◽  
...  

Introduction. The local delivery of therapeutic antibiotic concentrations to the zone of surgical intervention in bone pathology enables either to prevent or significantly decrease the rate of osteomyelitis development. It that study the efficacy of vancomycin inclusion and release from three dimensional constructors based on sodium alginate, gelatin and octacalcium phosphate and vancomycin intended for bone defect substitution was studied. Materials and methods . Prototyping of 3D constructors was performed by extrusion 3D printing. Various concentrations of vancomycin were added as an additional component at the stage of preparation of hydrogel (“ink”) for printing. Physical testing of the constructors included electron microscopic evaluation of their microstructure and porosity as well as the study of mechanical strength for compression and stretching. Functional activity of printed constructors with respect to the test strain S. aureus ATCC 6538-P was assessed by a disc-diffusion method in vitro and on the model of infected excision skin wound in rats - in vivo. Results . Analysis of the kinetic curves showed that the principal release of the drug in the model liquid took place within the first day. The total volume of the bound and released vancomycin made up approximately 20% of the calculated initial amount for all three concentrations. Formation of the marked growth inhibition zone of S. aureus strain in presence of vancomycin rich constructors was demonstrated in vitro. Insertion of constructors into the zone of infected skin defect resulted in a decrease of inflammatory processes severity and rate as well as accelerated the terms of complete wound healing. Conclusion. Study results showed the principle potentiality of bone substituting implants 3D-printing using multicomponent hydrogel compositions without change of separate components characteristics.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5068
Author(s):  
Aleksandra Laskus-Zakrzewska ◽  
Paulina Kazimierczak ◽  
Joanna Kolmas

In this work, 3D porous granules based on Zn and Se-containing calcium phosphates (CaPs) were fabricated using a droplet-extrusion technique. The composite beads varied in composition and contained two different natural polymers: sodium alginate (SA) and gelatin (GEL). To analyse and compare their physicochemical properties, such as porosity and morphology, different techniques were applied, including scanning electron microscopy (SEM), sorption of N2 and mercury porosimetry. Prior to the fabrication of the granules, the properties of CaPs materials, (the bioceramic base of the beads), selenium (IV)-substituted hydroxyapatite (Se-HA) and zinc-substituted dicalcium phosphate dihydrate (Zn-DCPD), were also investigated. The results of cell viability assessment showed that Se-HA powder was non-toxic to human osteoblasts (hFOB 1.19) and simultaneously exhibited high toxicity to tumour cells (Saos-2). Once the cytotoxicity assay was completed, Se-HA and Zn-DCPD were used to prepare 3D materials. The prepared porous granules were used as matrices to deliver simvastatin to bones. Simvastatin was applied in either the lipophilic form or hydrophilic form. The release kinetics of simvastatin from granules of different composition was then assessed and compared.


2020 ◽  
Vol 9 (12) ◽  
pp. 4008
Author(s):  
Simon Raveau ◽  
Fabienne Jordana

The three-dimensional printing of scaffolds is an interesting alternative to the traditional techniques of periodontal regeneration. This technique uses computer assisted design and manufacturing after CT scan. After 3D modelling, individualized scaffolds are printed by extrusion, selective laser sintering, stereolithography, or powder bed inkjet printing. These scaffolds can be made of one or several materials such as natural polymers, synthetic polymers, or bioceramics. They can be monophasic or multiphasic and tend to recreate the architectural structure of the periodontal tissue. In order to enhance the bioactivity and have a higher regeneration, the scaffolds can be embedded with stem cells and/or growth factors. This new technique could enhance a complete periodontal regeneration. This review summarizes the application of 3D printed scaffolds in periodontal regeneration. The process, the materials and designs, the key advantages and prospects of 3D bioprinting are highlighted, providing new ideas for tissue regeneration.


Author(s):  
Joshua P. Temple ◽  
Daphne L. Hutton ◽  
Ben P. Hung ◽  
Pinar Yilgor Huri ◽  
Colin A. Cook ◽  
...  

Author(s):  
Shan Li ◽  
Yifan Huan ◽  
Bin Zhu ◽  
Haoxiang Chen ◽  
Ming Tang ◽  
...  

AbstractAnterior spine decompression and reconstruction with bone grafts and fusion is a routine spinal surgery. The intervertebral fusion cage can maintain intervertebral height and provide a bone graft window. Titanium fusion cages are the most widely used metal material in spinal clinical applications. However, there is a certain incidence of complications in clinical follow-ups, such as pseudoarticulation formation and implant displacement due to nonfusion of bone grafts in the cage. With the deepening research on metal materials, the properties of these materials have been developed from being biologically inert to having biological activity and biological functionalization, promoting adhesion, cell differentiation, and bone fusion. In addition, 3D printing, thin-film, active biological material, and 4D bioprinting technology are also being used in the biofunctionalization and intelligent advanced manufacturing processes of implant devices in the spine. This review focuses on the biofunctionalization of implant materials in 3D printed intervertebral fusion cages. The surface modifications of implant materials in metal endoscopy, material biocompatibility, and bioactive functionalizationare summarized. Furthermore, the prospects and challenges of the biofunctionalization of implant materials in spinal surgery are discussed.


Sign in / Sign up

Export Citation Format

Share Document