Immunoglobulin G from Breast Cancer Patients Regulates MCF-7 Cells Migration and MMP-9 Activity by Stimulating Muscarinic Acetylcholine Receptors

2012 ◽  
Vol 33 (2) ◽  
pp. 427-435 ◽  
Author(s):  
Laura T. Pelegrina ◽  
María Gabriela Lombardi ◽  
Gabriel L. Fiszman ◽  
María E. Azar ◽  
Carlos Cresta Morgado ◽  
...  
2005 ◽  
Vol 12 (3) ◽  
pp. 599-614 ◽  
Author(s):  
T Frogne ◽  
J S Jepsen ◽  
S S Larsen ◽  
C K Fog ◽  
B L Brockdorff ◽  
...  

Development of acquired resistance to antiestrogens is a major clinical problem in endocrine treatment of breast cancer patients. The IGF system plays a profound role in many cancer types, including breast cancer. Thus, overexpression and/or constitutive activation of the IGF-I receptor (IGF-IR) or different components of the IGF-IR signaling pathway have been reported to render breast cancer cells less estrogen dependent and capable of sustaining cell proliferation in the presence of antiestrogens. In this study, growth of the antiestrogen-sensitive human breast cancer cell line MCF-7 was inhibited by treatment with IGF-IR-neutralizing antibodies. In contrast, IGF-IR-neutralizing antibodies had no effect on growth of two different antiestrogen-resistant MCF-7 sublines. A panel of antiestrogen-resistant cell lines was investigated for expression of IGF-IR and either undetectable or severely reduced IGF-IR levels were observed. No increase in insulin receptor substrate 1 (IRS-1) or total PKB/Akt (Akt) was detected in the resistant cell lines. However, a significant increase in phosphorylated Akt (pAkt) was found in four of six antiestrogen-resistant cell lines. Overexpression of pAkt was associated with increased Akt kinase activity in both a tamoxifen- and an ICI 182,780-resistant cell line. Inhibition of Akt phosphorylation by the phosphatidylinositol 3-kinase (PI3-K) inhibitor wortmannin or the Akt inhibitor SH-6 (structurally modified phosphatidyl inositol ether liquid analog PIA 6) resulted in a more pronounced growth inhibitory effect on the antiestrogen-resistant cells compared with the parental cells, suggesting that signaling via Akt is required for antiestrogen-resistant cell growth in at least a subset of our antiestrogen-resistant cell lines. PTEN expression and activity was not decreased in cell lines overexpressing pAkt. Our data demonstrate that Akt is a target for treatment of antiestrogen-resistant breast cancer cell lines and we suggest that antiestrogen-resistant breast cancer patients may benefit from treatment targeted to inhibit Akt signaling.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. e22185-e22185
Author(s):  
S. Saji ◽  
N. Honma ◽  
M. Hirose ◽  
S. Hayashi ◽  
K. Kuroi

e22185 Background: We have reported that positive expression of Estrogen receptor β (ERβ) was associated with better prognosis in the early breast cancer patients treated with adjuvant tamoxifen monotherapy (J Clin Oncol. 2008). In addition, this was also true in the ERα-negative/PR-negative/Her-2 negative patients. We explored the biological impact of ERβ in breast cancer cell lines to determine whether these observations were due to its prognostic power or predictive power of response to the therapy. Methods: Since MCF-7 cell was ERβ-negative ERα-positive cell line, we established two stable clones of MCF-7 by introducing ERβ expression vector (β-clone 1, β-clone 2) as the model of ERβ-positive ERα-positive breast cancer. MDA-MB 231 cell was used as ERβ-positive triple-negative cell line. These cells were subjected to proliferation, expression and functional analysis. Results: In western blotting, both β-clone 1 and clone 2 showed decreased expression of PR and Her-2 than parent MCF-7, although there were no differences in ERα expression. Expression of ERβ decreased estradiol (E2) induced proliferation ability and rate of cells in S-phase cycle. PPT (ERα-specific agonist) and DPN (ERβ-specific agonist) did not show any difference in response, and IC 50 for 4 OH-tamoxifen and fulvestrant did not differ among MCF-7, β-clone 1 and clone 2 (0.05–0.1 μM). Whereas, cell death due to deprivation of E2 from 1nM to 1pM was more frequently observed in ERβ-expressing clones than in parent MCF-7 cell. These cell deaths did not involve standard apoptosis pathway with caspase-3/7 activation and PARP cleavage. E2, DPN and PPT did not affect the proliferation of ERβ-positive triple negative MDA-MB 231 cell, and IC 50 for 4-OH tamoxifen was too high (8 μM) to be achieved in clinical pharmacological dose. Conclusions: From our cell study, better prognosis of ERβ-positive breast cancer patient who treated with adjuvant tamoxifen is mainly due to its own favorable biological behavior. However, this prognostic impact may include the favorable response to the treatment, when we use estrogen-deprivation therapy such as aromatase inhibitors (AIs). Additional clinical study in AI users would be required to address this issue. No significant financial relationships to disclose.


2015 ◽  
Vol 129 (9) ◽  
pp. 809-822 ◽  
Author(s):  
Miao He ◽  
Yingzi Fu ◽  
Yuanyuan Yan ◽  
Qinghuan Xiao ◽  
Huizhe Wu ◽  
...  

Our study showed that Hh signalling activation contributed to BCSC-mediated chemoresistance in cultured breast cancer MCF-7 MS cells, in xenograft mice and in human breast cancer patients.


2020 ◽  
Author(s):  
Dawoon Jeong ◽  
Juyeon Ham ◽  
Hyeon Woo Kim ◽  
Heejoo Kim ◽  
Hwee Won Ji ◽  
...  

Abstract Background To comprehensively understand the molecular mechanism of tamoxifen resistance (TamR) acquisition by epigenetically regulated genes, it is essential to identify pivotal genes by genome-wide methylation analysis and verify their function in xenograft animal model and cancer patients. Methods The MCF-7/TamR breast cancer cell line was developed and a genome-wide methylation array was performed. The methylation and expression of ELOVL2 was validated in cultured cells, xenografted tumor tissue, and breast cancer patients by methylation-specific PCR, qRT-PCR, Western blot analysis, and immunohistochemistry. Deregulation of ELOVL2 and THEM4 was achieved using siRNA or generating stable transfectants. Tam sensitivity, cell growth, and apoptosis were monitored by colorimetric and colony formation assay and flow cytometric analysis. Pathway analysis was performed to generate networks for the differentially methylated genes in the MCF-7/TamR cells and for the differentially expressed genes in the ELOVL2-overexpressing cells. Results Genome-wide methylation analysis in the MCF-7/TamR cells identified elongation of very-long chain fatty acid protein 2 (ELOVL2) to be significantly hypermethylated and downregulated, which was further verified in the tumor tissues from TamR breast cancer patients (n = 28) compared with those from Tam-sensitive (TamS) patients (n = 33) (P < 0.001). Immunohistochemical analysis of tissues from cancer patients showed lower expression of ELOVL2 in the TamR than TamS tissues. Growth of the MCF-7/TamR cells overexpressing ELOVL2 was retarded in cell culture and also in xenograft tumor tissue. Strikingly, ELOVL2 attenuated resistance to Tam up to 70% judged by the colorimetric and colony formation assay and xenograft mouse model. ELOVL2 contributed to the recovery of Tam sensitivity by regulating a group of genes in the AKT and ERα signaling pathways, e.g., THEM4, which plays crucial roles in drug resistance. Conclusions ELOVL2 was hypermethylated and downregulated in TamR breast cancer patients compared with TamS patients. ELOVL2 is responsible for the recovery of Tam sensitivity. AKT- and ERα-hubbed networks are pivotal in ELOVL2 signaling, where THEM4 contributes to the relaying ELOVL2 signaling. This study implies that deregulation of a gene in fatty acid metabolism can lead to drug resistance, giving insight into the development of a new therapeutic strategy for drug-resistant breast cancer.


2019 ◽  
Vol 14 (2) ◽  
pp. 91-100 ◽  
Author(s):  
María E. Sales ◽  
Alejandro J. Español ◽  
Agustina R. Salem ◽  
Paola M. Pulido ◽  
Y. Sanchez ◽  
...  

Background: muscarinic acetylcholine receptors (mAChRs) have attracted interest as targets for therapeutic interventions in different illnesses like Alzheimer´s disease, viral infections and different tumors. Regarding the latter, many authors have studied each subtype of mAChRs, which seem to be involved in the progression of distinct types of malignancies. Methods: We carefully revised research literature focused on mAChRs expression and signaling as well as in their involvement in cancer progression and treatment. The characteristics of screened papers were described using the mentioned conceptual framework. Results: Muscarinic antagonists and agonists have been assayed for the treatment of tumors established in lung, brain and breast with beneficial effects. We described an up-regulation of mAChRs in mammary tumors and the lack of expression in non-tumorigenic breast cells and normal mammary tissues. We and others demonstrated that muscarinic agonists can trigger anti-tumor actions in a dose-dependent manner on tumors originated in different organs like brain or breast. At pharmacological concentrations, they exert similar effects to traditional chemotherapeutic agents. Metronomic chemotherapy refers to the administration of anti-cancer drugs at low doses with short intervals among them, and it is a different regimen applied in cancer treatment reducing malignant growth and angiogenesis, and very low incidence of adverse effects. Conclusion: The usage of subthreshold concentrations of muscarinic agonists combined with conventional chemotherapeutic agents could be a promising tool for breast cancer therapy.


2021 ◽  
Vol 118 (35) ◽  
pp. e2100784118
Author(s):  
Kotaro Azuma ◽  
Kazuhiro Ikeda ◽  
Takashi Suzuki ◽  
Kenjiro Aogi ◽  
Kuniko Horie-Inoue ◽  
...  

Increasing attention has been paid to roles of tripartite motif–containing (TRIM) family proteins in cancer biology, often functioning as E3 ubiquitin ligases. In the present study, we focus on a contribution of TRIM47 to breast cancer biology, particularly to endocrine therapy resistance, which is a major clinical problem in breast cancer treatment. We performed immunohistochemical analysis of TRIM47 protein expression in 116 clinical samples of breast cancer patients with postoperative endocrine therapy using tamoxifen. Our clinicopathological study showed that higher immunoreactivity scores of TRIM47 were significantly associated with higher relapse rate of breast cancer patients (P = 0.012). As functional analyses, we manipulated TRIM47 expression in estrogen receptor–positive breast cancer cells MCF-7 and its 4-hydroxytamoxifen (OHT)-resistant derivative OHTR, which was established in a long-term culture with OHT. TRIM47 promoted both MCF-7 and OHTR cell proliferation. MCF-7 cells acquired tamoxifen resistance by overexpressing exogenous TRIM47. We found that TRIM47 enhances nuclear factor kappa-B (NF-κB) signaling, which further up-regulates TRIM47. We showed that protein kinase C epsilon (PKC-ε) and protein kinase D3 (PKD3), known as NF-κB–activating protein kinases, are directly associated with TRIM47 and stabilized in the presence of TRIM47. As an underlying mechanism, we showed TRIM47-dependent lysine 27–linked polyubiquitination of PKC-ε. These results indicate that TRIM47 facilitates breast cancer proliferation and endocrine therapy resistance by forming a ternary complex with PKC-ε and PKD3. TRIM47 and its associated kinases can be a potential diagnostic and therapeutic target for breast cancer refractory to endocrine therapy.


Sign in / Sign up

Export Citation Format

Share Document