scholarly journals Machine-Learning-Enabled DDoS Attacks Detection in P4 Programmable Networks

2021 ◽  
Vol 30 (1) ◽  
Author(s):  
Francesco Musumeci ◽  
Ali Can Fidanci ◽  
Francesco Paolucci ◽  
Filippo Cugini ◽  
Massimo Tornatore

Abstract Distributed Denial of Service (DDoS) attacks represent a major concern in modern Software Defined Networking (SDN), as SDN controllers are sensitive points of failures in the whole SDN architecture. Recently, research on DDoS attacks detection in SDN has focused on investigation of how to leverage data plane programmability, enabled by P4 language, to detect attacks directly in network switches, with marginal involvement of SDN controllers. In order to effectively address cybersecurity management in SDN architectures, we investigate the potential of Artificial Intelligence and Machine Learning (ML) algorithms to perform automated DDoS Attacks Detection (DAD), specifically focusing on Transmission Control Protocol SYN flood attacks. We compare two different DAD architectures, called Standalone and Correlated DAD, where traffic features collection and attack detection are performed locally at network switches or in a single entity (e.g., in SDN controller), respectively. We combine the capability of ML and P4-enabled data planes to implement real-time DAD. Illustrative numerical results show that, for all tested ML algorithms, accuracy, precision, recall and F1-score are above 98% in most cases, and classification time is in the order of few hundreds of $$\upmu \text {s}$$ μ s in the worst case. Considering real-time DAD implementation, significant latency reduction is obtained when features are extracted at the data plane by using P4 language. Graphic Abstract

2021 ◽  
Vol 13 (19) ◽  
pp. 10743
Author(s):  
Mazhar Javed Awan ◽  
Umar Farooq ◽  
Hafiz Muhammad Aqeel Babar ◽  
Awais Yasin ◽  
Haitham Nobanee ◽  
...  

Currently, the Distributed Denial of Service (DDoS) attack has become rampant, and shows up in various shapes and patterns, therefore it is not easy to detect and solve with previous solutions. Classification algorithms have been used in many studies and have aimed to detect and solve the DDoS attack. DDoS attacks are performed easily by using the weaknesses of networks and by generating requests for services for software. Real-time detection of DDoS attacks is difficult to detect and mitigate, but this solution holds significant value as these attacks can cause big issues. This paper addresses the prediction of application layer DDoS attacks in real-time with different machine learning models. We applied the two machine learning approaches Random Forest (RF) and Multi-Layer Perceptron (MLP) through the Scikit ML library and big data framework Spark ML library for the detection of Denial of Service (DoS) attacks. In addition to the detection of DoS attacks, we optimized the performance of the models by minimizing the prediction time as compared with other existing approaches using big data framework (Spark ML). We achieved a mean accuracy of 99.5% of the models both with and without big data approaches. However, in training and testing time, the big data approach outperforms the non-big data approach due to that the Spark computations in memory are in a distributed manner. The minimum average training and testing time in minutes was 14.08 and 0.04, respectively. Using a big data tool (Apache Spark), the maximum intermediate training and testing time in minutes was 34.11 and 0.46, respectively, using a non-big data approach. We also achieved these results using the big data approach. We can detect an attack in real-time in few milliseconds.


2020 ◽  
pp. 399-410
Author(s):  
Jawad Dalou' ◽  
Basheer Al-Duwairi ◽  
Mohammad Al-Jarrah

Software Defined Networking (SDN) has emerged as a new networking paradigm that is based on the decoupling between data plane and control plane providing several benefits that include flexible, manageable, and centrally controlled networks. From a security point of view, SDNs suffer from several vulnerabilities that are associated with the nature of communication between control plane and data plane. In this context, software defined networks are vulnerable to distributed denial of service attacks. In particular, the centralization of the SDN controller makes it an attractive target for these attacks because overloading the controller with huge packet volume would result in bringing the whole network down or degrade its performance. Moreover, DDoS attacks may have the objective of flooding a network segment with huge traffic volume targeting single or multiple end systems. In this paper, we propose an entropy-based mechanism for Distributed Denial of Service (DDoS) attack detection and mitigation in SDN networks. The proposed mechanism is based on the entropy values of source and destination IP addresses of flows observed by the SDN controller which are compared to a preset entropy threshold values that change in adaptive manner based on network dynamics. The proposed mechanism has been evaluated through extensive simulation experiments.


Proceedings ◽  
2020 ◽  
Vol 63 (1) ◽  
pp. 51
Author(s):  
Swathi Sambangi ◽  
Lakshmeeswari Gondi

The problem of identifying Distributed Denial of Service (DDos) attacks is fundamentally a classification problem in machine learning. In relevance to Cloud Computing, the task of identification of DDoS attacks is a significantly challenging problem because of computational complexity that has to be addressed. Fundamentally, a Denial of Service (DoS) attack is an intentional attack attempted by attackers from single source which has an implicit intention of making an application unavailable to the target stakeholder. For this to be achieved, attackers usually stagger the network bandwidth, halting system resources, thus causing denial of access for legitimate users. Contrary to DoS attacks, in DDoS attacks, the attacker makes use of multiple sources to initiate an attack. DDoS attacks are most common at network, transportation, presentation and application layers of a seven-layer OSI model. In this paper, the research objective is to study the problem of DDoS attack detection in a Cloud environment by considering the most popular CICIDS 2017 benchmark dataset and applying multiple regression analysis for building a machine learning model to predict DDoS and Bot attacks through considering a Friday afternoon traffic logfile.


Author(s):  
Harrsheeta Sasikumar

Distributed Denial of Service (DDoS) attack is one of the common attack that is predominant in the cyber world. DDoS attack poses a serious threat to the internet users and affects the availability of services to legitimate users. DDOS attack is characterized by the blocking a particular service by paralyzing the victim’s resources so that they cannot be used to legitimate purpose leading to server breakdown. DDoS uses networked devices into remotely controlled bots and generates attack. The proposed system detects the DDoS attack and malware with high detection accuracy using machine learning algorithms. The real time traffic is generated using virtual instances running in a private cloud. The DDoS attack is detected by considering the various SNMP parameters and classifying using machine learning technique like bagging, boosting and ensemble models. Also, the various types of malware on the networked devices are prevent from being used as a bot for DDOS attack generation.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Biao Han ◽  
Xiangrui Yang ◽  
Zhigang Sun ◽  
Jinfeng Huang ◽  
Jinshu Su

Distributed Denial of Service (DDoS) attacks are one of the biggest concerns for security professionals. Traditional middle-box based DDoS attack defense is lack of network-wide monitoring flexibility. With the development of software-defined networking (SDN), it becomes prevalent to exploit centralized controllers to defend against DDoS attacks. However, current solutions suffer with serious southbound communication overhead and detection delay. In this paper, we propose a cross-plane DDoS attack defense framework in SDN, called OverWatch, which exploits collaborative intelligence between data plane and control plane with high defense efficiency. Attack detection and reaction are two key procedures of the proposed framework. We develop a collaborative DDoS attack detection mechanism, which consists of a coarse-grained flow monitoring algorithm on the data plane and a fine-grained machine learning based attack classification algorithm on the control plane. We propose a novel defense strategy offloading mechanism to dynamically deploy defense applications across the controller and switches, by which rapid attack reaction and accurate botnet location can be achieved. We conduct extensive experiments on a real-world SDN network. Experimental results validate the efficiency of our proposed OverWatch framework with high detection accuracy and real-time DDoS attack reaction, as well as reduced communication overhead on SDN southbound interface.


Author(s):  
Ahmad Azhari ◽  
Arif Wirawan Muhammad ◽  
Cik Feresa Mohd Foozy

Distributed Service Denial (DDoS) is a type of network attack, which each year increases in volume and intensity.  DDoS attacks also form part of the major types of cyber security threats so far. Early detection plays a key role in avoiding the catastrophic effects on server infrastructure from DDoS attacks. Detection techniques in the traditional Intrusion Detection System (IDS) are far from perfect compared to a number of modern techniques and tools used by attackers, because the traditional IDS only uses signature-based detection or anomaly-based detection models and causes a lot of false positive flags, since the flow of computer network data packets has complex properties in terms of both size and source. Based on the  deficiency in the ordinary IDS, this study aims to detect DDoS attacks by using machine learning techniques to enhance IDS policy development.  According to the experiment the selection of features plays an important role in the precision of the detection results and in the performance of machine learning in classification problems. The combination of seven key selected dataset features used as an input neural network classifier in this study provides the highest accuracy value at 97.76%.


2020 ◽  
Vol 12 (3) ◽  
pp. 1035 ◽  
Author(s):  
Huseyin Polat ◽  
Onur Polat ◽  
Aydin Cetin

Software Defined Networking (SDN) offers several advantages such as manageability, scaling, and improved performance. However, SDN involves specific security problems, especially if its controller is defenseless against Distributed Denial of Service (DDoS) attacks. The process and communication capacity of the controller is overloaded when DDoS attacks occur against the SDN controller. Consequently, as a result of the unnecessary flow produced by the controller for the attack packets, the capacity of the switch flow table becomes full, leading the network performance to decline to a critical threshold. In this study, DDoS attacks in SDN were detected using machine learning-based models. First, specific features were obtained from SDN for the dataset in normal conditions and under DDoS attack traffic. Then, a new dataset was created using feature selection methods on the existing dataset. Feature selection methods were preferred to simplify the models, facilitate their interpretation, and provide a shorter training time. Both datasets, created with and without feature selection methods, were trained and tested with Support Vector Machine (SVM), Naive Bayes (NB), Artificial Neural Network (ANN), and K-Nearest Neighbors (KNN) classification models. The test results showed that the use of the wrapper feature selection with a KNN classifier achieved the highest accuracy rate (98.3%) in DDoS attack detection. The results suggest that machine learning and feature selection algorithms can achieve better results in the detection of DDoS attacks in SDN with promising reductions in processing loads and times.


Author(s):  
Shweta Gumaste ◽  
Narayan D. G. ◽  
Sumedha Shinde ◽  
Amit K

Security is a critical concern for cloud service providers. Distributed denial of service (DDoS) attacks are the most frequent of all cloud security threats, and the consequences of damage caused by DDoS are very serious. Thus, the design of an efficient DDoS detection system plays an important role in monitoring suspicious activity in the cloud. Real-time detection mechanisms operating in cloud environments and relying on machine learning algorithms and distributed processing are an important research issue. In this work, we propose a real-time detection of DDoS attacks using machine learning classifiers on a distributed processing platform. We evaluate the DDoS detection mechanism in an OpenStack-based cloud testbed using the Apache Spark framework. We compare the classification performance using benchmark and real-time cloud datasets. Results of the experiments reveal that the random forest method offers better classifier accuracy. Furthermore, we demonstrate the effectiveness of the proposed distributed approach in terms of training and detection time.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1980
Author(s):  
Fu-Hau Hsu ◽  
Chia-Hao Lee ◽  
Chun-Yi Wang ◽  
Rui-Yi Hung ◽  
YungYu Zhuang

In this paper, we aim to detect distributed denial of service (DDoS) attacks, and receive a notification of destination service, changing immediately, without the additional efforts of other modules. We designed a kernel-based mechanism to build a new Transmission Control Protocol/Internet Protocol (TCP/IP) connection smartly by the host while the users or clients not knowing the location of the next host. Moreover, we built a lightweight flooding attack detection mechanism in the user mode of an operating system. Given that reinstalling a modified operating system on each client is not realistic, we managed to replace the entry of the system call table with a customized sys_connect. An effective defense depends on fine detection and defensive procedures. In according with our experiments, this novel mechanism can detect flooding DDoS successfully, including SYN flood and ICMP flood. Furthermore, through cooperating with a specific low cost network architecture, the mechanism can help to defend DDoS attacks effectively.


Sign in / Sign up

Export Citation Format

Share Document