scholarly journals Synthesis of cross-linked polyurethane elastomers with the inclusion of polar-aromatic moieties (BA, PNBA and 3, 5-DNBA): Electrical and thermo-mechanical properties analysis

2021 ◽  
Vol 28 (5) ◽  
Author(s):  
Manauwar Ali Ansari ◽  
Patcharapon Somdee ◽  
Kálmán Marossy

AbstractIn this work, we used the design strategy “doped nonpolar polymers” and synthesized the polyurethane elastomers (PUEs) by doping with highly polar aromatic molecules such as benzoic acid (BA), 4(para)-nitro-benzoic acid (PNBA), and 3, 5-di-nitro-benzoic acid (3, 5-DNBA) by using the solution casting method. The effect of each molecule in three different weight percentages 2%, 4%, and 6% on electrical and thermo-mechanical properties of the material has studied. Experiments were carried out to determine electrical properties such as DC volume resistivity, dielectric constant, and loss factor. DMA and DSC measurements were done to assess thermo-mechanical properties. Also, thermal conductivity measurement was carried out and a strong nitro group and doping percentage dependent results have been observed. A comparative analysis of the effect on the said properties was done among the doped and undoped PUEs.

Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2018
Author(s):  
Muhammad Samsuri ◽  
Ihsan Iswaldi ◽  
Purba Purnama

Stereocomplexation is one of several approaches for improving polylactide (PLA) properties. The high molecular weight of poly L-lactide (PLLA) and poly D-lactide (PDLA) homopolymers are a constraint during the formation of stereocomplex PLAs (s-PLAs). The presence of s-PLA particles in PLA PLLA/PDLA blends can initiate the formation of s-PLA crystalline structures. We used the solution casting method to study the utilization of s-PLA materials from high molecular weight PLLA/PDLA blends for increasing s-PLA formation. The s-PLA particles initiated the formation of high molecular weight PLLA/PDLA blends, obtaining 49.13% s-PLA and 44.34% of the total crystalline fraction. In addition, the mechanical properties were enhanced through s-PLA crystalline formation and the increasing of total crystallinity of the PLLA/PDLA blends. The s-PLA particles supported initiation for s-PLA formation and acted as a nucleating agent for PLA homopolymers. These unique characteristics of s-PLA particles show potential to overcome the molecular weight limitation for stereocomplexation of PLLA/PDLA blends.


2015 ◽  
Vol 815 ◽  
pp. 89-93 ◽  
Author(s):  
Siti Farhana Hisham ◽  
Siti Hajar Kasim ◽  
Azreena Mastor ◽  
Siti Noorzidah Mohd Sabri ◽  
Syazana Abu Bakar ◽  
...  

The aim of this study was to investigate the effects of covalent and ionic cross-linked reactions which were respectively done by using genipin and tripolyphosphate (tpp), on the structure and mechanical properties of chitosan film. Both cross-linked and uncross-linked films were prepared by solution casting method and characterized. FTIR spectra showed no characteristic of –OCH3 peak from genipin at 1444 cm-1 which resulted by a new covalent bonding in chitosan film. Reduction in absorption intensity at 1560 cm-1 wave number in chitosan cross-linked tpp films were due to the presence of ionic interaction between the positive charged of amino group in chitosan and negatively charged of phosphate group by tpp. The pattern area from the XRD results showed that the covalent cross-linked had significantly changed on the chitosan`s degree of crystallinity. The water contact angle on the surface of covalent/ionic cross-linked chitosan film reached the highest θ at 82.72° which indicated more hydrophobic properties was formed. Covalent/ionic cross-linked chitosan also showed the higher mechanical strength with average tensile stress value at 71.25 MPa. All finding results demonstrated that cross-linked modification on the chitosan film had successfully reduced the film’s hydrophilicity and increased the mechanical properties of the film.


RSC Advances ◽  
2016 ◽  
Vol 6 (50) ◽  
pp. 43855-43863 ◽  
Author(s):  
Junping Jia ◽  
Jinjun Yang ◽  
Yun Zhao ◽  
Hui Liang ◽  
Minfang Chen

Nanocomposites of biodegradable PLLA and magnesium oxide composite (PLLA/MgO-NPs) and surface modified magnesium oxide composite (PLLA/m-MgO-NPs) were prepared using a solution casting method.


2021 ◽  
Vol 2120 (1) ◽  
pp. 012004
Author(s):  
May Teng Hooi ◽  
Siew Wei Phang ◽  
Hui Ying Yow ◽  
Edmund David ◽  
Ning Xin Kim ◽  
...  

Abstract This paper presents the interaction comparison of poly(vinyl) alcohol (PVA) with hydroxyapatite derived from Spanish Mackerel (SM) and Whitefin Wolf Herring (WWH) bones, in different processing method. PVA filament and solution casting method illustrated higher crystallinity in the FTIR graph as compared to the PVA pellet and filament extrusion method. Besides, minimal interactions between PVA with glycerol and HAp was observed as well. PVA pellet and solution casting method portrait higher interaction as compared to the PVA filament and extrusion method. As for the HAp of SM and WWH, WWH had higher crystallinity and better cell adhesion with a higher Ca/P ratio while SM had relatively better mechanical strength with Ca/P ratio near to stoichiometric value. The loading of HAp (0, 2.5, 5, 10, 20, 30%) does not affect interactions of PVA/HAp composite in FTIR, and thermal properties in TGA. However, it caused an increase in crystallinity at low HAp loading and decreased at higher loading of HAp above 10%. Upon addition of HAp, tensile strength increased and elongation at break decreased. As the loading of HAp increased, both mechanical properties decreased. Scaffold with WWH composite possessed lower tensile strength and higher elongation at break than SM composite. The result of mechanical properties corresponded to the SEM result. ANOVA analysis justified the effect of HAp variations and loading on the mechanical properties of the composite was prominent.


2011 ◽  
Vol 284-286 ◽  
pp. 2384-2387
Author(s):  
Jin Cui Zhang ◽  
Xi Jun Liu ◽  
Tie Ning Ma

Polyurethane elastomers (PUE) were prepared by casting method using the prepolymer and the chain extender. In here, the prepolymer synthesized by using poly(tetramethylene glycol ether) (PTMG) and toluene diisocyanate (TDI), the chain extender was a mixture of 3,5-dimetylthio toluene diamine (E-300) and triethanolamine. The effects of the NCO concentration in prepolymer, the molar ratio of E-300/triethanolamine, and the chain extension coefficient of NCO/NH2 on the mechanical properties of the prepared PUE were studied. The results showed that the prepared PUE possesses excellent mechanical properties which can meet the drum scraper’s application requirements when the NCO concentration in prepolymer was 5.06% and the molar ratio of composite chain extender was 0.92/0.08.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
H. Somashekarappa ◽  
Y. Prakash ◽  
K. Hemalatha ◽  
T. Demappa ◽  
R. Somashekar

The aim of this present work is to investigate the effect of plasticizers like Sorbitol on microstructural and mechanical properties of hydroxypropyl methylcellulose (HPMC) and Polyvinylpyrrolidone (PVP) blend films. The pure blend and plasticized blend films were prepared by solution casting method and investigated using wide angle X-ray scattering (WAXS) method. WAXS analysis confirms that the plasticizers can enter into macromolecular blend structure and destroy the crystallinity of the films. FTIR spectra show that there are a shift and decrease in the intensity of the peaks confirming the interaction of plasticizer with the blend. Mechanical properties like tensile strength and Young’s Modulus decrease up to 0.6% of Sorbitol content in the films. Percentage of elongation at break increases suggesting that the plasticized films are more flexible than pure blend films. These films are suitable to be used as environmental friendly and biodegradable packaging films.


2021 ◽  
pp. 096739112110111
Author(s):  
Rahim Eqra ◽  
Mohammad Hadi Moghim ◽  
Navid Eqra

The aims of this research are to elucidate the role of graphene oxide on the mechanical properties of epoxy and also to obtain an equation for the modeling of its behavior. Accordingly, graphene oxide/epoxy nanocomposite samples are fabricated using the solution casting method. Tensile, flexural, SEM and FTIR tests are conducted on epoxy and the nanocomposite samples afterwards. The obtained results show that the tensile strength of epoxy improves even at low contents of graphene oxide such that 0.3 wt.% of GO yields an improvement of approximately 11.5%. The flexural strength of epoxy is also enhanced by 5.8% with 0.5 wt.% GO. Then, it decreases due to the agglomeration with increasing the GO content. In order to predict the tensile strength of GO/epoxy nanocomposites, a modified Halpin–Tsai equation is obtained with a new introduced correction factor as K = 39.5 Vf 1.135exp(2.9−1644.6 Vf). The obtained equation is in good agreement with the experimental data.


2009 ◽  
Vol 79-82 ◽  
pp. 417-420 ◽  
Author(s):  
Hong Xia Jiang ◽  
Qing Qing Ni ◽  
Toshiaki Natsuki

Carbon nanotubes (CNTs) reinforced natural rubber (NR) composites with the CNT contents of 1, 3, 5, 10 and 20 wt% were synthesized using a solution casting method. The morphology of the composites was observed by scanning electron microscopy and Fourier transform infrared spectroscopy. It was found that CNTs were well distributed into NR and there was an excellent interface between CNTs and natural rubber. The mechanical properties of the composites were investigated by dynamic mechanical analysis (DMA) test and tensile test. It was found that the increment of storage modulus of NR/CNT composites was about 0.42 MPa/wt% in the rubbery state which agreed well with the results of tensile test. The large modulus increment confirmed the reinforcement effect of carbon nanotubes.


Sign in / Sign up

Export Citation Format

Share Document