Characterization and comparison of thermal & mechanical properties of vermiculite polyvinylbutyral nanocomposites synthesized by solution casting method

2018 ◽  
Vol 151 ◽  
pp. 189-193 ◽  
Author(s):  
Sevim İşçi ◽  
Yavuz İşçi
Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2018
Author(s):  
Muhammad Samsuri ◽  
Ihsan Iswaldi ◽  
Purba Purnama

Stereocomplexation is one of several approaches for improving polylactide (PLA) properties. The high molecular weight of poly L-lactide (PLLA) and poly D-lactide (PDLA) homopolymers are a constraint during the formation of stereocomplex PLAs (s-PLAs). The presence of s-PLA particles in PLA PLLA/PDLA blends can initiate the formation of s-PLA crystalline structures. We used the solution casting method to study the utilization of s-PLA materials from high molecular weight PLLA/PDLA blends for increasing s-PLA formation. The s-PLA particles initiated the formation of high molecular weight PLLA/PDLA blends, obtaining 49.13% s-PLA and 44.34% of the total crystalline fraction. In addition, the mechanical properties were enhanced through s-PLA crystalline formation and the increasing of total crystallinity of the PLLA/PDLA blends. The s-PLA particles supported initiation for s-PLA formation and acted as a nucleating agent for PLA homopolymers. These unique characteristics of s-PLA particles show potential to overcome the molecular weight limitation for stereocomplexation of PLLA/PDLA blends.


RSC Advances ◽  
2016 ◽  
Vol 6 (50) ◽  
pp. 43855-43863 ◽  
Author(s):  
Junping Jia ◽  
Jinjun Yang ◽  
Yun Zhao ◽  
Hui Liang ◽  
Minfang Chen

Nanocomposites of biodegradable PLLA and magnesium oxide composite (PLLA/MgO-NPs) and surface modified magnesium oxide composite (PLLA/m-MgO-NPs) were prepared using a solution casting method.


2021 ◽  
Vol 2120 (1) ◽  
pp. 012004
Author(s):  
May Teng Hooi ◽  
Siew Wei Phang ◽  
Hui Ying Yow ◽  
Edmund David ◽  
Ning Xin Kim ◽  
...  

Abstract This paper presents the interaction comparison of poly(vinyl) alcohol (PVA) with hydroxyapatite derived from Spanish Mackerel (SM) and Whitefin Wolf Herring (WWH) bones, in different processing method. PVA filament and solution casting method illustrated higher crystallinity in the FTIR graph as compared to the PVA pellet and filament extrusion method. Besides, minimal interactions between PVA with glycerol and HAp was observed as well. PVA pellet and solution casting method portrait higher interaction as compared to the PVA filament and extrusion method. As for the HAp of SM and WWH, WWH had higher crystallinity and better cell adhesion with a higher Ca/P ratio while SM had relatively better mechanical strength with Ca/P ratio near to stoichiometric value. The loading of HAp (0, 2.5, 5, 10, 20, 30%) does not affect interactions of PVA/HAp composite in FTIR, and thermal properties in TGA. However, it caused an increase in crystallinity at low HAp loading and decreased at higher loading of HAp above 10%. Upon addition of HAp, tensile strength increased and elongation at break decreased. As the loading of HAp increased, both mechanical properties decreased. Scaffold with WWH composite possessed lower tensile strength and higher elongation at break than SM composite. The result of mechanical properties corresponded to the SEM result. ANOVA analysis justified the effect of HAp variations and loading on the mechanical properties of the composite was prominent.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
H. Somashekarappa ◽  
Y. Prakash ◽  
K. Hemalatha ◽  
T. Demappa ◽  
R. Somashekar

The aim of this present work is to investigate the effect of plasticizers like Sorbitol on microstructural and mechanical properties of hydroxypropyl methylcellulose (HPMC) and Polyvinylpyrrolidone (PVP) blend films. The pure blend and plasticized blend films were prepared by solution casting method and investigated using wide angle X-ray scattering (WAXS) method. WAXS analysis confirms that the plasticizers can enter into macromolecular blend structure and destroy the crystallinity of the films. FTIR spectra show that there are a shift and decrease in the intensity of the peaks confirming the interaction of plasticizer with the blend. Mechanical properties like tensile strength and Young’s Modulus decrease up to 0.6% of Sorbitol content in the films. Percentage of elongation at break increases suggesting that the plasticized films are more flexible than pure blend films. These films are suitable to be used as environmental friendly and biodegradable packaging films.


2021 ◽  
pp. 096739112110111
Author(s):  
Rahim Eqra ◽  
Mohammad Hadi Moghim ◽  
Navid Eqra

The aims of this research are to elucidate the role of graphene oxide on the mechanical properties of epoxy and also to obtain an equation for the modeling of its behavior. Accordingly, graphene oxide/epoxy nanocomposite samples are fabricated using the solution casting method. Tensile, flexural, SEM and FTIR tests are conducted on epoxy and the nanocomposite samples afterwards. The obtained results show that the tensile strength of epoxy improves even at low contents of graphene oxide such that 0.3 wt.% of GO yields an improvement of approximately 11.5%. The flexural strength of epoxy is also enhanced by 5.8% with 0.5 wt.% GO. Then, it decreases due to the agglomeration with increasing the GO content. In order to predict the tensile strength of GO/epoxy nanocomposites, a modified Halpin–Tsai equation is obtained with a new introduced correction factor as K = 39.5 Vf 1.135exp(2.9−1644.6 Vf). The obtained equation is in good agreement with the experimental data.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1778
Author(s):  
Muzamil Ahmad Khan ◽  
Zakir Hussain ◽  
Usman Liaqat ◽  
Muhammad Arman Liaqat ◽  
Muhammad Zahoor

The use of biodegradable polymeric scaffolds for tissue regeneration is becoming a common practice in the clinic. Therefore, an inclined trend is developing with regards to improving the mechanical properties of these scaffolds. Here, we aim to improve the mechanical properties of poly (butylene succinate) (PBS)/poly (l-lactic acid) (PLLA) blends by incorporating hydroxyapatite nanoparticles (HAP) in the blends to form composites. PBS/PLLA = 100/0, 95/5, 90/10, 85/15, and 0/100 wt% blends, along-with the loadings of a few mg of HAPs, were prepared using the solution casting method. A scanning electron microscope showed the voids and droplets, indicating the immiscibility of blends. Due to this immiscibility, the tensile strength values of the blends were found to be in between that of pure PBS (42.85 MPa) and pure PLLA (31.39 MPa). HAPs act as a compatibilizer by incorporating themselves in the voids and spaces caused by the immiscibility, thus increasing the overall tensile strength of the resulting composite to a certain extent, e.g., the tensile strength of PBS/PLLA = 95/5 loaded with 50 mg HAPs was found to be 51.16 MPa. The structural analysis employing the X-ray diffraction (XRD) patterns confirmed the formation of polymer blends and composites. The contact angle analysis showed that the addition of HAPs increased the hydrophilicity of the resulting composites. Selective samples were investigated based on mechanical properties to see if the blends and composites are biocompatible. The obtained results showed that all of the samples with better mechanical properties demonstrated good biocompatibility. This indicates the effectiveness of scaffolds for tissue regeneration.


2012 ◽  
Vol 2012 (0) ◽  
pp. _J044013-1-_J044013-4
Author(s):  
Sho ISHII ◽  
Shota IIZUKA ◽  
Yoshihide EBIHARA ◽  
Masae KANDA ◽  
Masaki TAKIGUCHI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document