Roles of uranyl silicate minerals in the long-term mobility of uranium in fractured granite

Author(s):  
Min-Hoon Baik ◽  
Hye-Ryun Cho
2014 ◽  
Vol 482-483 ◽  
pp. 23-35 ◽  
Author(s):  
Elsa Lacroix ◽  
Alessandro Brovelli ◽  
Julien Maillard ◽  
Emmanuelle Rohrbach-Brandt ◽  
D.A. Barry ◽  
...  

2021 ◽  
Author(s):  
Félix de Tombeur ◽  
Benjamin Turner ◽  
Etienne Laliberté ◽  
Hans Lambers ◽  
Grégory Mahy ◽  
...  

<p>Silicon (Si) is widely recognized as an important regulator of the global carbon (C) cycle via its effect on diatom productivity in oceans and the weathering of silicate minerals on continents. Si is also a beneficial plant nutrient, improving resistance to herbivory and pathogens and mitigating the negative effects of several abiotic stresses, including nutrient limitation. However, changes in Si sources and cycling during long-term development of terrestrial ecosystems remain poorly understood. We studied Si in soils and plants along two 2-Ma coastal dune chronosequences in southwestern Australia (Jurien Bay and Guilderton). Soil development along these chronosequences includes carbonate leaching in Holocene soils, formation of secondary Si-bearing minerals in Mid-Pleistocene soils, followed by their loss via dissolution, to yield quartz-rich soils of Early-Pleistocene age. The chronosequences also exhibit an extreme gradient of soil fertility in terms of rock-derived nutrients, and shifts from nitrogen (N) to phosphorus (P) limitation of plant productivity as soils age. Along each chronosequence, we quantified the pools of reactive Si-bearing phases and plant-available Si in the soils, and physically extracted soil phytoliths (amorphous silica formed in plant tissues). We also quantified Si, macronutrients and total phenols in the most abundant plants growing along the best-studied of the two chronosequences (Jurien Bay). We found that plant-available Si was lowest in young and carbonate-rich soils, because carbonates weathering reduces the weathering of silicate minerals by consuming protons, and Si is strongly sorbed by secondary minerals in alkaline soils. Plant-available Si increased in intermediate-age soils during the formation of secondary minerals (kaolinite), and finally decreased in old, quartz-rich soils, due to continuous desilication. As pedogenic Si pools became depleted with increasing soil age, Si availability was increasingly determined by soil phytoliths. At Jurien Bay, foliar Si increased continuously as soils aged, in contrast with foliar macronutrients that declined markedly in strongly weathered soils. Finally, foliar phenol concentrations declined with increasing soil age and were negatively correlated with foliar Si at the community and individual species level, suggesting a tradeoff between these two leaf defense strategies. Our results highlight a nonlinear response of plant-available Si to long-term pedogenesis, with an increase during carbonate loss and a decrease in the silicates weathering domain. They also demonstrate that the retention of Si by plants during ecosystem retrogression sustains its terrestrial cycling by leveraging the high reactivity of soil phytoliths compared with soil-derived aluminosilicates. Moreover, the continuous increase of plant Si concentrations as rock-derived nutrients are depleted suggests important plant benefits associated with Si in P-impoverished environments. This is in line with the resource availability hypothesis, which predicts that plants adapted to infertile soils have high levels of anti-herbivore leaf defenses. In particular, old and P-depleted soils increased the relative expression of Si-based defenses, while young soils where plant productivity is limited by N promoted leaf phenol accumulation. Overall, our results demonstrate that long-term ecosystem and soil development strongly influence soil-plant Si dynamics, with cascading effects on plant ecology and global Si and C biogeochemistry.</p>


2020 ◽  
Author(s):  
Yoshitaka Nara ◽  
Masaji Kato ◽  
Tsutomu Sato ◽  
Masanori Kohno ◽  
Toshinori Sato

<p>It is essential to understand the long-term migration of radionuclides when considering rock engineering projects such as the geological disposal of radioactive waste. The network of fractures and pores in a rock mass plays a major role in fluid migration as it provides a pathway for fluid flow. The geometry of the network can change due to fracture sealing by some fine-grained materials over long-term periods. Groundwater usually contains fine-grained minerals such as clay minerals. Therefore, it is possible that the accumulation of such fine-grained minerals occurs within a rock fracture under groundwater flow. In this case, the aperture of a fracture may decrease, which brings about the decrease of the permeability. It is therefore essential to conduct permeability measurements using water including fine-grained minerals in order to understand the permeability characteristics of a rock. However, this has not been investigated well. In this study, we use a macro-fractured granite sample to investigate the temporal change of the permeability that occurs under the flow of water that includes two different amounts of clay.</p><p>It was shown that the clay accumulated in the macro-fracture and that the permeability of the macro-fractured granite sample decreased over time. It was also recognized that the decrease of the permeability was more significant under the water flow with the higher clay content. As a result of the observation using microscope, it was recognized that the clay minerals accumulated in the macro-fracture in the granite sample, which decreased the aperture of the fracture. We concluded that the accumulation of clay minerals in the fracture decreased the permeability of the rock. Furthermore, it is concluded that the filling and closure of fractures in rock is possible under the flow of groundwater including clay minerals.</p><p> </p>


2019 ◽  
Vol 42 ◽  
Author(s):  
John P. A. Ioannidis

AbstractNeurobiology-based interventions for mental diseases and searches for useful biomarkers of treatment response have largely failed. Clinical trials should assess interventions related to environmental and social stressors, with long-term follow-up; social rather than biological endpoints; personalized outcomes; and suitable cluster, adaptive, and n-of-1 designs. Labor, education, financial, and other social/political decisions should be evaluated for their impacts on mental disease.


2016 ◽  
Vol 39 ◽  
Author(s):  
Mary C. Potter

AbstractRapid serial visual presentation (RSVP) of words or pictured scenes provides evidence for a large-capacity conceptual short-term memory (CSTM) that momentarily provides rich associated material from long-term memory, permitting rapid chunking (Potter 1993; 2009; 2012). In perception of scenes as well as language comprehension, we make use of knowledge that briefly exceeds the supposed limits of working memory.


1999 ◽  
Vol 173 ◽  
pp. 189-192
Author(s):  
J. Tichá ◽  
M. Tichý ◽  
Z. Moravec

AbstractA long-term photographic search programme for minor planets was begun at the Kleť Observatory at the end of seventies using a 0.63-m Maksutov telescope, but with insufficient respect for long-arc follow-up astrometry. More than two thousand provisional designations were given to new Kleť discoveries. Since 1993 targeted follow-up astrometry of Kleť candidates has been performed with a 0.57-m reflector equipped with a CCD camera, and reliable orbits for many previous Kleť discoveries have been determined. The photographic programme results in more than 350 numbered minor planets credited to Kleť, one of the world's most prolific discovery sites. Nearly 50 per cent of them were numbered as a consequence of CCD follow-up observations since 1994.This brief summary describes the results of this Kleť photographic minor planet survey between 1977 and 1996. The majority of the Kleť photographic discoveries are main belt asteroids, but two Amor type asteroids and one Trojan have been found.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


2000 ◽  
Vol 179 ◽  
pp. 201-204
Author(s):  
Vojtech Rušin ◽  
Milan Minarovjech ◽  
Milan Rybanský

AbstractLong-term cyclic variations in the distribution of prominences and intensities of green (530.3 nm) and red (637.4 nm) coronal emission lines over solar cycles 18–23 are presented. Polar prominence branches will reach the poles at different epochs in cycle 23: the north branch at the beginning in 2002 and the south branch a year later (2003), respectively. The local maxima of intensities in the green line show both poleward- and equatorward-migrating branches. The poleward branches will reach the poles around cycle maxima like prominences, while the equatorward branches show a duration of 18 years and will end in cycle minima (2007). The red corona shows mostly equatorward branches. The possibility that these branches begin to develop at high latitudes in the preceding cycles cannot be excluded.


Sign in / Sign up

Export Citation Format

Share Document