The effect of high tempered firing cycle on the bioactive behavior of sol–gel derived dental porcelain modified by bioactive glass

2012 ◽  
Vol 63 (3) ◽  
pp. 481-494 ◽  
Author(s):  
Marianthi Manda ◽  
Ourania-Menti Goudouri ◽  
Lambrini Papadopoulou ◽  
Nikolaos Kantiranis ◽  
Dimitris Christofilos ◽  
...  
2011 ◽  
Vol 493-494 ◽  
pp. 80-84
Author(s):  
M. Manda ◽  
Ourania Menti Goudouri ◽  
Lambrini Papadopoulou ◽  
Nikolaos Kantiranis ◽  
T. Zorba ◽  
...  

End temperature of the firing cycle, during processing of dental ceramics, directs the interaction of both sintering and crystallization pathways, tailoring physicochemical properties and bioactivity. Thus, the purpose of the present study was to investigate the influence of end temperature over the structural properties and composition, along with the bioactive behavior of dental porcelain, modified by bioactive glass. Sol-gel derived specimens of bioactive glass (58S)- commercial dental porcelain composites synthesized (BP) and underwent firing cycles at the crystallization temperature (Tc=1040oC) and the temperature just below the melting range (Tm=1080oC), as the composite material. The recommended temperature for the commercial porcelain (Ta=930oC) was examined, too. All specimens were characterized using X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM). The assessment of bioactivity was performed in vitro, via the detection of apatite layer development. The well-defined particles, observed by SEM, at 930oC, developed contact formation during the stage of neck growth at 1040oC and 1080oC, indicating the initiation of sintering process. Increasing temperature, the complex porei network became smoother, while spherical and closed porei were evident. FTIR revealed the predominance of wollastonite at the increased temperatures, along with the appearance of cristobalite, while XRD confirmed the results. Finally, the in vitro tests evidenced the bioactivity of the specimens independently of the final temperature, though the increased temperature caused delayed apatite layer formation on their surface. The, microstructural and chemical evolution of the studied composite is temperature-dependent. Increased temperature favored the sintering process initiation, along with the surface crystallization, which delays bioactivity.


2008 ◽  
Vol 396-398 ◽  
pp. 95-98 ◽  
Author(s):  
Ourania Menti Goudouri ◽  
Eleana Kontonasaki ◽  
Nikolaos Kantiranis ◽  
Xanthippi Chatzistavrou ◽  
Lambrini Papadopoulou ◽  
...  

Melt derived bioactive glass- porcelain system is reported to be bioactive but with a slow rate of bioactivity. The aim of this work is to fabricate and characterize bioactive glass/dental porcelain composites produced by the sol-gel method. Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and X-ray Diffractometry (XRD) were used to characterize the fabricated materials. The FTIR spectra and the XRD patterns confirm the presence of both constituents in the mixtures, while the dominant crystal phases in bioactive glass/dental porcelain specimens are leucite and wollastonite.


2011 ◽  
Vol 26 (8) ◽  
pp. 869-873
Author(s):  
Xue HAN ◽  
Xiao-Feng CHEN ◽  
Yong-Chun MENG ◽  
Jia-An ZHOU ◽  
Cai LIN ◽  
...  

2020 ◽  
Vol 10 (7) ◽  
pp. 2595 ◽  
Author(s):  
Chih-Ling Huang ◽  
Wei Fang ◽  
Bo-Rui Huang ◽  
Yan-Hsiung Wang ◽  
Guo-Chung Dong ◽  
...  

Bioactive glass (BG) was made by the sol–gel method and doped with boron (B) to increase its bioactivity. Microstructures of BG and B-doped BG were observed by scanning electron microscopy, and phase identification was performed using an X-ray diffraction diffractometer. The ion concentrations released after soaking in simulated body fluid (SBF) for 1, 4, and 7 days were measured by inductively coupled plasma mass spectrometry, and the pH value of the SBF was measured after soaking samples to determine the variation in the environment. Brunauer–Emmett–Teller (BET) analysis was performed to further verify the characteristics of mesoporous structures. High performance liquid chromatography was used to evaluate the drug delivery ability of teicoplanin. Results demonstrated that B-doped BG performed significantly better than BG in parameters assessed by the BET analysis. B-doped BG has nanopores and more rough structures, which is advantageous for drug delivery as there are more porous structures available for drug adsorption. Moreover, B-doped BG was shown to be effective for keeping pH values stable and releasing B ions during soaking in SBF. The cumulative release of teicoplanin from BG and B-doped BG reached 20.09% and 3.17% on the first day, respectively. The drug release gradually slowed, reaching 29.43% and 4.83% after 7 days, respectively. The results demonstrate that the proposed bioactive glass has potential as a drug delivery system.


2016 ◽  
Vol 81 (1) ◽  
pp. 84-94 ◽  
Author(s):  
Anthony L. B. Maçon ◽  
Manon Jacquemin ◽  
Samuel J. Page ◽  
Siwei Li ◽  
Sergio Bertazzo ◽  
...  

2008 ◽  
Vol 396-398 ◽  
pp. 131-134 ◽  
Author(s):  
Ourania Menti Goudouri ◽  
Xanthippi Chatzistavrou ◽  
Eleana Kontonasaki ◽  
Nikolaos Kantiranis ◽  
Lambrini Papadopoulou ◽  
...  

Thermal treatment of bioactive glasses can affect their microstructure and thus their bioactivity. The aim of this study was the characterization of the thermally treated sol-gel-derived bioactive glass 58S at characteristic temperatures and the dependence of its bioactive behavior on the specific thermal treatment. The thermal behavior of the bioactive glass was studied by thermal analysis (TG/DTA). Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffractometry (XRD) were used for the characterization of the bioactive glass. The bioactive behavior in Simulated Body Fluid (SBF) was examined by Scanning Electron Microscopy (SEM-EDS) and FTIR. The major crystal phases after thermal treatment were Calcium Silicates, Wollastonite and Pseudowollastonite, while all thermally treated samples developed apatite after 48 hours in SBF. A slight enhancement of bioactivity was observed for the samples heated at the temperature range 910-970oC.


Sign in / Sign up

Export Citation Format

Share Document