The Impact of Sintering Temperature on the Bioactive Glass-Dental Porcelain Composite Material

2011 ◽  
Vol 493-494 ◽  
pp. 80-84
Author(s):  
M. Manda ◽  
Ourania Menti Goudouri ◽  
Lambrini Papadopoulou ◽  
Nikolaos Kantiranis ◽  
T. Zorba ◽  
...  

End temperature of the firing cycle, during processing of dental ceramics, directs the interaction of both sintering and crystallization pathways, tailoring physicochemical properties and bioactivity. Thus, the purpose of the present study was to investigate the influence of end temperature over the structural properties and composition, along with the bioactive behavior of dental porcelain, modified by bioactive glass. Sol-gel derived specimens of bioactive glass (58S)- commercial dental porcelain composites synthesized (BP) and underwent firing cycles at the crystallization temperature (Tc=1040oC) and the temperature just below the melting range (Tm=1080oC), as the composite material. The recommended temperature for the commercial porcelain (Ta=930oC) was examined, too. All specimens were characterized using X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM). The assessment of bioactivity was performed in vitro, via the detection of apatite layer development. The well-defined particles, observed by SEM, at 930oC, developed contact formation during the stage of neck growth at 1040oC and 1080oC, indicating the initiation of sintering process. Increasing temperature, the complex porei network became smoother, while spherical and closed porei were evident. FTIR revealed the predominance of wollastonite at the increased temperatures, along with the appearance of cristobalite, while XRD confirmed the results. Finally, the in vitro tests evidenced the bioactivity of the specimens independently of the final temperature, though the increased temperature caused delayed apatite layer formation on their surface. The, microstructural and chemical evolution of the studied composite is temperature-dependent. Increased temperature favored the sintering process initiation, along with the surface crystallization, which delays bioactivity.

2018 ◽  
Vol 17 (2) ◽  
pp. 150-159 ◽  
Author(s):  
Dalila Ksouri ◽  
Hafit Khireddine ◽  
Ali Aksas ◽  
Tiago Valente ◽  
Fatima Bir ◽  
...  

Abstract In this work ternary bioactive glasses with the molar composition 63 % SiO2, 28 % CaO, and 9 % P2O5 have been prepared via sol-gel processing route leading to xerogel or aerogel glasses, depending on the drying conditions. Two types of drying methods were used: atmospheric pressure drying (evaporative), to produce xerogels, and supercritical fluids drying, to obtain aerogels. Both dried gels were subjected to heat-treatment at three different temperatures: 400, 600 and 800 ºC in order to the removal of synthesis byproducts and structural modifications. The resulting materials were characterized by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermal gravimetric analysis (TGA) and differential thermal analysis (DTA), and by in vitro bioactivity tests in simulated body fluid. The influence of the drying and the sintering temperature of their structure, morphology, and bioactivity of the final products were evaluated. The results show a good bioactivity of xerogel and aerogel bioactive glass powders with the formation of an apatite layer after one day of immersion in SBF solution for aerogel bioactive glass powders and a particle size less than 10 nm. An apatite layer formed after 3 days in the case of xerogel bioactive glass powders and a particle size around 100 nm.


2011 ◽  
Vol 493-494 ◽  
pp. 43-48 ◽  
Author(s):  
Ourania Menti Goudouri ◽  
Maria Perissi ◽  
Eleni Theodosoglou ◽  
Lambrini Papadopoulou ◽  
Xanthippi Chatzistavrou ◽  
...  

In most biphasic composite systems consisting of sol-gel derived bioactive glass and a second system that is usually used as a reinforcing agent, thorough stirring is necessary to prevent the precipitation of the grains of the second system. Consequently, the aim of this work is to investigate the impact of various stirring rates on the crystallinity and bioactivity of a bioactive glass in the system 58S. Sol-gel-derived bioactive glass (58S) was produced as described in literature. During the gelation, stirring rates of 0, 200, 400, 600 and 800 rpms were applied producing, respectively, the corresponding glass powders. The in vitro bioactivity of the powders was tested in Simulated Body Fluid (SBF) for various immersion times, while the solution was renewed after 6h, 24h and then every 2 days. Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and X-ray Diffractometry (XRD) were used to characterize all materials before and after immersion in SBF solution. FTIR and XRD measurements of all powders revealed mainly the formation of an amorphous glass, while the main crystalline phase was identified to be Ca2SiO4. After immersion in SBF solution for 12h, SEM microphotographs revealed apatite formation on the surface of all samples, while FTIR and XRD confirmed the aforementioned findings. Furthermore, since EDS analysis proved a mean molar Ca/P ratio of about1.7 after 6 days of immersion of all samples- besides those stirred at 400 and 600rpm- it can be assumed that a thick apatite layer was formed covering the whole surface.


2012 ◽  
Vol 63 (3) ◽  
pp. 481-494 ◽  
Author(s):  
Marianthi Manda ◽  
Ourania-Menti Goudouri ◽  
Lambrini Papadopoulou ◽  
Nikolaos Kantiranis ◽  
Dimitris Christofilos ◽  
...  

2020 ◽  
Vol 833 ◽  
pp. 214-219
Author(s):  
Nik Syahirah Aliaa Nik Sharifulden ◽  
Siti Noor Fazliah Mohd Noor ◽  
Siti Fatimah Samsurrijal ◽  
Siti Nur Liyana Ramlee ◽  
Nur Syazana Azizan

Bioactivity is an important aspect in biomaterial science ensuring materials used are safe for clinical application. The study describes fabrication of composites containing polylactic acid (PLA) – polyethylene glycol (PEG) with incorporation of sol-gel derived 45S5 bioactive glass (BG). Thermal analysis via Differential Thermal Analysis shows a favorable point over degree of crystallization that influence cells attachment, although non-significant difference in values indicates BG has homogenously dispersed. This correlates to X-ray diffraction analysis where non-significant difference is seen in intensities of the diffraction peaks, which confirms low impact of BG brittleness properties over the fabricated composite. Composites’ pH and degradation study in Simulated Body Fluid shows a steady increment profile over time and lower degradation rate for the composite after incorporation of BG. In vitro cell proliferation study also showed that HDF cells seeded on composite film of P/BG2.5 exhibit highest cell viability with steady increment of proliferation throughout the observation period.


2017 ◽  
Vol 43 (15) ◽  
pp. 12835-12843 ◽  
Author(s):  
Amirhossein Moghanian ◽  
Sadegh Firoozi ◽  
Mohammadreza Tahriri

2014 ◽  
Vol 631 ◽  
pp. 30-35 ◽  
Author(s):  
S. Solgi ◽  
M. Shahrezaee ◽  
A. Zamanian ◽  
T.S. Jafarzadeh Kashi ◽  
Majid Raz ◽  
...  

Bioactive glass of the type CaO–SrO–P2O5–SiO2was obtained by the sol-gel processing method. Three samples containing 0 mol%, 5 mol% and 10 mol% of SrO were synthesized. The obtained bioactive glasses were characterized by the techniques such as, X-ray diffraction (XRD) and scanning electron microscope (SEM) and the effect of SrO/CaO substitution on in vitro biological properties of the synthesized glasses were evaluated and biocompatibility of the samples was measured using MTT assay. The results showed that incorporation of Sr in the obtained glass network did not result in any structural alteration of it due to the similar role of SrO compared with that of CaO. In vitro experiments with human osteosarcoma cell lines (MG-63) and MTT assay indicated that bioactive glass incorporating 5 mol% of Sr in the composition is non-toxic and revealed good biocompatibility.


Silicon ◽  
2015 ◽  
Vol 9 (4) ◽  
pp. 535-542 ◽  
Author(s):  
S. Solgi ◽  
M. Khakbiz ◽  
M. Shahrezaee ◽  
A. Zamanian ◽  
M. Tahriri ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Elke M. F. Lemos ◽  
Sandhra M. Carvalho ◽  
Patrícia S. O. Patrício ◽  
Claudio L. Donnici ◽  
Marivalda M. Pereira

Recent studies in tissue engineering have highlighted the importance of the development of composite materials based on biodegradable polymers containing bioactive glasses, in particular, composites for high load support and excellent cell viability for potential application in bone regeneration. In this work, hybrid composite films were obtained by combining chitosan with bioactive glass in solution form and in nanoparticle dispersion form obtained by the two different synthesis routes: the sol-gel method and coprecipitation. The bioactive glass served both as a mechanical reinforcing agent and as a triggering agent with high bioactivity. The results ofin vitroassays with simulated body fluid demonstrated the formation of a significant layer of fibrils on the surface of the film, with a typical morphology of carbonated hydroxyapatite, reflecting induction of a favorable bioactivity. Maximum tensile stress increased from 42 to 80 MPa to the sample with 5% wt bioactive glass. In addition, samples containing 5% and 10% wt bioactive glass showed a significant increase in cell viability, 18 and 30% increase compared to the control group. The samples showed significant response, indicating that they could be a potential material for use in bone regeneration through tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document