scholarly journals Amorphous alloys and differential scanning calorimetry (DSC)

Author(s):  
Dora Janovszky ◽  
Maria Sveda ◽  
Anna Sycheva ◽  
Ferenc Kristaly ◽  
Ferenc Zámborszky ◽  
...  

AbstractA remarkable number of scientific papers are available in the literature about the bulk amorphous alloys and metallic glasses. Today, DSC is an essential tool for amorphous alloys research and development, and of course for quality assurance. In many cases, users seek to examine the determination of only one or two properties, although much more information can be obtained from the measurements. The research involved structural relaxation, Curie temperature, glass temperature, crystallization, phase separation, nanocrystalline volume fraction, melting point and liquidus temperature determination subjects and kinetics of microstructural transformations induced by thermal treatment. We collected and present the information that can be obtained with this technique and draws the reader’s attention to some potential problems related to data interpretation.

2018 ◽  
Vol 7 (1) ◽  
pp. 21-30 ◽  
Author(s):  
Norbert Halmen ◽  
Christoph Kugler ◽  
Eduard Kraus ◽  
Benjamin Baudrit ◽  
Thomas Hochrein ◽  
...  

Abstract. The degree of cross-linking and curing is one of the most important values concerning the quality of cross-linked polyethylene (PE-X) and the functionality of adhesives and resin-based components. Up to now, the measurement of this property has mostly been time-consuming and usually destructive. Within the shown work the feasibility of single-sided nuclear magnetic resonance (NMR) for the non-destructive determination of the degree of cross-linking and curing as process monitoring was investigated. First results indicate the possibility of distinguishing between PE-X samples with different degrees of cross-linking. The homogeneity of the samples and the curing kinetics of adhesives can also be monitored. The measurements show good agreement with reference tests (wet chemical analysis, differential scanning calorimetry, dielectric analysis). Furthermore, the influence of sample temperature on the characteristic relaxation times can be observed.


2014 ◽  
Vol 508 ◽  
pp. 110-113
Author(s):  
Rong Hua Zhang ◽  
Biao Wu ◽  
Xiao Ping Zheng

The temperature and duration of β1→α+β2 transformation of Ti-6Al-4V alloy in cooling process were measured by differential scanning calorimetry, and transformation activation energy and Avrami exponent of β1→α+β2 were also calculated. The results show that the cooling rate is in the range of 在5~20°C/min, the transformation temperature and the transformation duration β1→α+β2 transformation of Ti-6Al-4V alloy decreased with the increasing cooling rate, its transformation activation energy decreased with the increasing phase transformation volume fraction, and Avrami exponent was between 1 and 2 at 660°C.


2021 ◽  
Vol 54 (3) ◽  
Author(s):  
Isaac J. Gresham ◽  
Timothy J. Murdoch ◽  
Edwin C. Johnson ◽  
Hayden Robertson ◽  
Grant B. Webber ◽  
...  

Neutron reflectometry is the foremost technique for in situ determination of the volume fraction profiles of polymer brushes at planar interfaces. However, the subtle features in the reflectometry data produced by these diffuse interfaces challenge data interpretation. Historically, data analyses have used least-squares approaches that do not adequately quantify the uncertainty of the modeled profile and ignore the possibility of other structures that also match the collected data (multimodality). Here, a Bayesian statistical approach is used that permits the structural uncertainty and multimodality to be quantified for polymer brush systems. A free-form model is used to describe the volume fraction profile, minimizing assumptions regarding brush structure, while only allowing physically reasonable profiles to be produced. The model allows the total volume of polymer and the profile monotonicity to be constrained. The rigor of the approach is demonstrated via a round-trip analysis of a simulated system, before it is applied to real data examining the well characterized collapse of a thermoresponsive brush. It is shown that, while failure to constrain the interfacial volume and consider multimodality may result in erroneous structures being derived, carefully constraining the model allows for robust determination of polymer brush compositional profiles. This work highlights that an appropriate combination of flexibility and constraint must be used with polymer brush systems to ensure the veracity of the analysis. The code used in this analysis is provided, enabling the reproduction of the results and the application of the method to similar problems.


1999 ◽  
Vol 580 ◽  
Author(s):  
T.K. Croat ◽  
A.K. Gangopadhyay ◽  
K.F. Kelton

AbstractThe crystallization kinetics of Al-Gd-La-Ni metallic glasses to nanostructured phases are analyzed using differential scanning calorimetry and transmission electron microscopy. In a narrow alloy composition range near Al88Gd6La2Ni4, TEM reveals an amorphous phase separation that occurs upon annealing at low temperatures prior to crystallization. Al-enriched regions, typically 40 nm in diameter, bounded by rare-earth rich regions, are visible. Upon crystallization, α-Al forms preferentially at the interface between these phase separated regions. The relevance of this crystallization sequence to previous work in Al-RE-TM glasses and to the evolution of nanoscale microstructures common in the crystallization of other metallic glasses are discussed.


1999 ◽  
Vol 581 ◽  
Author(s):  
R. I. Wu ◽  
G. Wilde ◽  
J. H. Perepezko

ABSTRACTAl-Sm and Al-Y-Fe alloys with a high number density of nanocrystalline fcc-Al homogeneously dispersed within the amorphous matrix have been synthesized by devitrifying the precursor metallic glasses produced by rapid solidification. The kinetics of metallic glass formation and the development of the nanostructure during devitrification are discussed in terms of the rate limiting mechanism. The glass transition temperature of the two metallic glasses has been successfully assessed with the application of the modulated-temperature differential scanning calorimetry (DDSC). In addition, the formation of quenched-in nuclei was investigated by a comparison study on the cold-rolled and melt-spun Al92Sm8 amorphous samples. Furthermore, the enhancement of the particle density of the fcc-Al nanocrystals in the amorphous matrix after devitrification has been demonstrated by the incorporation of nanosize Pb particles.


1986 ◽  
Vol 80 ◽  
Author(s):  
A. Calka ◽  
A. P. Radliński

IntroductionThe isothermal devitrification by nucleation and growth of metallic glasses is usually analysed using the Johnson-Mehl-Avrami (JMA) equation: where x is the volume fraction crystallized after time t, K is a thermally activated rate constant, τ is the nucleation lag time, and n is the so-called Avrami exponent. If the nucleation conditions and growth morphology remain unchanged during the crystallization then n is a constant. There is ample experimental evidence that for the Pd-Si system the growth process is either eutectic or interface-controlled. Therefore, one expects n=3 for crystallization on pre-existing nuclei (zero nucleation rate) and n=4 for crystallization at constant nucleation rate, both for three-dimensional growth. When the growth dimensionality is decreased by one these values decrease stepwise by one as well.


Sign in / Sign up

Export Citation Format

Share Document