Long non-coding RNA HCG18 promotes M1 macrophage polarization through regulating the miR-146a/TRAF6 axis, facilitating the progression of diabetic peripheral neuropathy

Author(s):  
Wei Ren ◽  
Guangxia Xi ◽  
Xing Li ◽  
Lingxia Zhao ◽  
Kun Yang ◽  
...  
2021 ◽  
Vol 8 ◽  
Author(s):  
Bei-Yan Liu ◽  
Lin Li ◽  
Li-Wei Bai ◽  
Chang-Shui Xu

Diabetic peripheral neuropathy (DPN) is a prevalent diabetes mellitus (Feldman et al., 2017) complication and the primary reason for amputation. Meanwhile, long non-coding RNAs (lncRNAs) are a type of regulatory non-coding RNAs (ncRNAs) that broadly participate in DPN development. However, the correlation of lncRNA X-inactive specific transcript (XIST) with DPN remains unclear. In this study, we were interested in the role of XIST in the modulation of DPN progression. Significantly, our data showed that the expression of XIST and sirtuin1 (SIRT1) was inhibited, and the expression of microRNA-30d-5p (miR-30d-5p) was enhanced in the trigeminal sensory neurons of the diabetic mice compared with the normal mice. The levels of LC3II and Beclin-1 were inhibited in the diabetic mice. The treatment of high glucose (HG) reduced the XIST expression in Schwann cells. The apoptosis of Schwann cells was enhanced in the HG-treated cells, but the overexpression of XIST could block the effect in the cells. Moreover, the levels of LC3II and Beclin-1 were reduced in the HG-treated Schwann cells, while the overexpression of XIST was able to reverse this effect. The HG treatment promoted the production of oxidative stress, while the XIST overexpression could attenuate this result in the Schwann cells. Mechanically, XIST was able to sponge miR-30d-5p and miR-30d-5p-targeted SIRT1 in the Schwann cells. MiR-30d-5p inhibited autophagy and promoted oxidative stress in the HG-treated Schwann cells, and SIRT1 presented a reversed effect. MiR-30d-5p mimic or SIRT1 depletion could reverse XIST overexpression-mediated apoptosis and autophagy of the Schwann cells. Thus, we concluded that XIST attenuated DPN by inducing autophagy through miR-30d-5p/SIRT1 axis. XIST and miR-30d-5p may be applied as the potential targets for DPN therapy.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Ying Wang ◽  
Chenyi Xue ◽  
Muredach Reilly ◽  
Hanrui Zhang

We aim to interrogate the functions of a subset of human macrophage intergenic long non-coding RNA (lincRNAs) which harbor cardiometabolic trait-associated single nucleotide polymorphisms (SNPs). We have found that one lincRNA RP11-472N13.3 overlaps rs7081678, a SNP significantly associated with central obesity (WHRadjBMI; P =5.57x10 -6 ). RP11-472N13.3 expression is enriched in macrophages relative to other obesity relevant tissues. Thus, RP11-472N13.3 SNPs for obesity may act via its myeloid cell modulation in adipose. In human monocyte-derived macrophage (HMDM), human induced pluripotent stem cell-derived macrophages (IPSDM) and THP1-derived macrophages (THP-1Φ), at RNAseq and Q-PCR, RP11-472N13.3 is abundant in M0 and M2(IL-4) macrophages but markedly suppressed in the M1 state (LPS/IFNγ). RP11-472N13.3 localizes almost exclusively to the cytoplasmic fraction of M0-HMDM. Consistent with GENCODE, our HMDM RNAseq data suggest a single 2-exon isoform. ChIP-seq reveals PU.1 and C/EBP-β binding at RP11-472N13.3 transcription start site. In our HMDM RNAseq (n=30 subjects) data, RP11-472N13.3 expression was inversely correlated with IFNγ-JAK-STAT signaling genes (e.g., IRF4, IL-12A, IL-23, STAT1, SOCS1, SOCS3 ), but not LPS/TLR4 activated genes (e.g., TNFA, CXCL9, CXCL10, IL1B ). Furthermore, KD of RP11-472N13.3 using siRNA or LNA-ASO in THP-1Φ, amplified expression of IFNγ target genes but not LPS/TLR4 targets during M1 activation (LPS/IFNγ). These data suggest its potential role in modulating IFNγ signaling. Mechanistic studies are needed to examine the molecular mechanisms.


2020 ◽  
Vol 24 (10) ◽  
pp. 5542-5554 ◽  
Author(s):  
Yingying Zhang ◽  
Xueqin Li ◽  
Xiang Kong ◽  
Mengying Zhang ◽  
Deguo Wang ◽  
...  

The Prostate ◽  
2018 ◽  
Vol 79 (1) ◽  
pp. 105-112 ◽  
Author(s):  
Jie Liu ◽  
Degang Ding ◽  
Zhaoqiang Jiang ◽  
Tao Du ◽  
Jianjun Liu ◽  
...  

2020 ◽  
Vol 24 (21) ◽  
pp. 12341-12354
Author(s):  
Yu‐Long Xue ◽  
Sheng‐Xiao Zhang ◽  
Chao‐Feng Zheng ◽  
Yu‐Feng Li ◽  
Li‐Hui Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document