Dexmedetomidine reversed hypoxia/reoxygenation injury-induced oxidative stress and endoplasmic reticulum stress-dependent apoptosis of cardiomyocytes via SIRT1/CHOP signaling pathway

Author(s):  
Ying Zhang ◽  
Qihong Zhao ◽  
Xiaohong Li ◽  
Fuhai Ji
2021 ◽  
Vol 255 ◽  
pp. 109013
Author(s):  
Xiaochun Wu ◽  
Shengying Zhang ◽  
Cuiqin Long ◽  
Zhen An ◽  
Xiaoyong Xing ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Yang Feng ◽  
Ruixia Cui ◽  
Zeyu Li ◽  
Xia Zhang ◽  
Yifan Jia ◽  
...  

Acetaminophen- (APAP-) induced hepatic injury is an important clinical challenge. Oxidative stress, inflammation, apoptosis, and endoplasmic reticulum stress (ERS) contribute to the pathogenesis. Methane has potential anti-inflammatory, antioxidant, and antiapoptotic properties. This project was aimed at studying the protective effects and relative mechanisms of methane in APAP-induced liver injury. In the in vivo experiment, C57BL/6 mice were treated with APAP (400 mg/kg) to induce hepatic injury followed by methane-rich saline (MRS) 10 ml/kg i.p. after 12 and 24 h. We observed that MRS alleviated the histopathological lesions in the liver, decreased serum aminotransferase levels, reduced the levels of inflammatory cytokines, suppressed the nuclear factor-κB expression. Further, we found that MRS relieved oxidative stress by regulating the Nrf2/HO-1/NQO1 signaling pathway and their downstream products after APAP challenge. MRS also regulated proteins associated with ERS-induced apoptosis. In the in vitro experiment, the L-02 cell line was treated with APAP (10 mM) to induce hepatic injury. We found that a methane-rich medium decreased the levels of reactive oxygen species (DHE fluorescent staining), inhibited apoptosis (cell flow test), and regulated the Nrf2/HO-1/NQO1 signaling pathway. Our data indicated that MRS prevented APAP-induced hepatic injury via anti-inflammatory, antioxidant, anti-ERS, and antiapoptotic properties involving the Nrf2/HO-1/NQO1 signaling pathway.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Mayumi Soga ◽  
Atsushi Matsuzawa ◽  
Hidenori Ichijo

Apoptosis signal-regulating kinase 1 (ASK1) is a mitogen-activated protein kinase (MAPK) kinase kinase that activates the downstream MAPKs, c-Jun N-terminal kinase (JNK) and p38. ASK1 is activated by various types of stress, such as oxidative stress, endoplasmic reticulum stress, and infection, and regulates various cellular functions. Recently, it has been reported that ASK1 is associated with various diseases induced by oxidative stress. In this review, we introduce recent findings of the regulatory mechanisms of ASK1 and the oxidative stress-induced diseases mediated by the ASK1 signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document