On temperature and stresses in a thermoelastic half-space with temperature dependent properties

Meccanica ◽  
2017 ◽  
Vol 52 (11-12) ◽  
pp. 2789-2799
Author(s):  
Stanisław J. Matysiak ◽  
Dariusz M. Perkowski ◽  
Roman Kulchytsky-Zhyhailo
2019 ◽  
Vol 24 (4) ◽  
pp. 53-65
Author(s):  
R.R. Gupta ◽  
R.R. Gupta

Abstract The present study deals with the propagation of waves in a transversely isotropic micropolar generalized thermoelastic material possessing temperature dependent elastic properties. After developing the solution for LS, GL and CT theory, the phase velocities and attenuation quality factor have been obtained. The expressions for amplitudes of stresses, displacements, microratation and temperature distribution have been derived and computed numerically. The numerically evaluated results have been plotted graphically. Some particular cases of interest have also been obtained.


2020 ◽  
Vol 24 (3 Part B) ◽  
pp. 2137-2150
Author(s):  
Dariusz Perkowski ◽  
Piotr Sebestianiuk ◽  
Jakub Augustyniak

The study examines problems of heat conduction in a half-space with a thermal conductivity coefficient that is dependent on temperature. A boundary plane is heated locally in a circle zone at a given temperature as a function of radius. A solution is obtained for any function that describes temperature in the heating zone. Two special cases are investigated in detail, namely Case 1 with given constant temperature in the circle zone and Case 2 with temperature given as a function of radius, r. The temperature of the boundary on the exterior of the heating zone is assumed as zero. The Hankel transform method is applied to obtain a solution for the formulated problem. The effect of thermal properties on temperature distributions in the considered body is investigated. The obtained results were compared with finite element method model.


ACS Omega ◽  
2021 ◽  
Author(s):  
Khagendra Baral ◽  
Saro San ◽  
Ridwan Sakidja ◽  
Adrien Couet ◽  
Kumar Sridharan ◽  
...  

2020 ◽  
Vol 75 (9-10) ◽  
pp. 805-813
Author(s):  
Irma Peschke ◽  
Lars Robben ◽  
Christof Köhler ◽  
Thomas Frauenheim ◽  
Josef-Christian Buhl ◽  
...  

AbstractSynthesis, crystal structure and temperature-dependent behavior of Na2H4Ga2GeO8 are reported. This novel gallogermanate crystallizes in space group I41/acd with room-temperature powder diffraction lattice parameters of a = 1298.05(1) pm and c = 870.66(1) pm. The structure consists of MO4 (M = Ga, Ge) tetrahedra in four-ring chains, which are connected by two different (left- and right-handed) helical chains of NaO6 octahedra. Protons coordinating the oxygen atoms of the GaO4 tetrahedra not linked to germanium atoms ensure the charge balance. Structure solution and refinement are based on single crystal X-ray diffraction measurements. Proton positions are estimated using a combined approach of DFT calculations and NMR, FTIR and Raman spectroscopic techniques. The thermal expansion was examined in the range between T = 20(2) K and the compound’s decomposition temperature at 568(5) K, in which no phase transition could be observed, and Debye temperatures of 266(11) and 1566(65) K were determined for the volume expansion.


Author(s):  
Mohamed Abdelsabour Fahmy

AbstractThe main aim of this article is to develop a new boundary element method (BEM) algorithm to model and simulate the nonlinear thermal stresses problems in micropolar functionally graded anisotropic (FGA) composites with temperature-dependent properties. Some inside points are chosen to treat the nonlinear terms and domain integrals. An integral formulation which is based on the use of Kirchhoff transformation is firstly used to simplify the transient heat conduction governing equation. Then, the residual nonlinear terms are carried out within the current formulation. The domain integrals can be effectively treated by applying the Cartesian transformation method (CTM). In the proposed BEM technique, the nonlinear temperature is computed on the boundary and some inside domain integral. Then, nonlinear displacement can be calculated at each time step. With the calculated temperature and displacement distributions, we can obtain the values of nonlinear thermal stresses. The efficiency of our proposed methodology has been improved by using the communication-avoiding versions of the Arnoldi (CA-Arnoldi) preconditioner for solving the resulting linear systems arising from the BEM to reduce the iterations number and computation time. The numerical outcomes establish the influence of temperature-dependent properties on the nonlinear temperature distribution, and investigate the effect of the functionally graded parameter on the nonlinear displacements and thermal stresses, through the micropolar FGA composites with temperature-dependent properties. These numerical outcomes also confirm the validity, precision and effectiveness of the proposed modeling and simulation methodology.


AIP Advances ◽  
2017 ◽  
Vol 7 (3) ◽  
pp. 035206
Author(s):  
P. L. Fulmek ◽  
P. Haumer ◽  
F. P. Wenzl ◽  
W. Nemitz ◽  
J. Nicolics

Sign in / Sign up

Export Citation Format

Share Document