Estimates of the errors when determining the direction and localization of the magnetic-field source of a dipole model

2008 ◽  
Vol 51 (5) ◽  
pp. 503-512
Author(s):  
Yu. M. Ivanov ◽  
V. G. Semenov
2018 ◽  
Author(s):  
Mahendran Subramanian ◽  
Arkadiusz Miaskowski ◽  
Stuart Iain Jenkins ◽  
Jenson Lim ◽  
Jon Dobson

AbstractThe manipulation of magnetic nanoparticles (MNPs) using an external magnetic field, has been demonstrated to be useful in various biomedical applications. Some techniques have evolved utilizing this non-invasive external stimulus but the scientific community widely adopts few, and there is an excellent potential for more novel methods. The primary focus of this study is on understanding the manipulation of MNPs by a time-varying static magnetic field and how this can be used, at different frequencies and displacement, to manipulate cellular function. Here we explore, using numerical modeling, the physical mechanism which underlies this kind of manipulation, and we discuss potential improvements which would enhance such manipulation with its use in biomedical applications, i.e., increasing the MNP response by improving the field parameters. From our observations and other related studies, we infer that such manipulation depends mostly on the magnetic field gradient, the magnetic susceptibility and size of the MNPs, the magnet array oscillating frequency, the viscosity of the medium surrounding MNPs, and the distance between the magnetic field source and the MNPs. Additionally, we demonstrate cytotoxicity in neuroblastoma (SH-SY5Y) and hepatocellular carcinoma (HepG2) cells in vitro. This was induced by incubation with MNPs, followed by exposure to a magnetic field gradient, physically oscillating at various frequencies and displacement amplitudes. Even though this technique reliably produces MNP endocytosis and/or cytotoxicity, a better biophysical understanding is required to develop the mechanism used for this precision manipulation of MNPs, in vitro.


2012 ◽  
Vol 532-533 ◽  
pp. 1308-1312 ◽  
Author(s):  
Zhong Le Liu ◽  
Han Jun Zhang ◽  
Hua Li

The article based on the analysis of the work principle of the torpedo magnetic fuse, according to the specific circumstances of the received signal of the torpedo magnetic fuse, proposed to use the two electrodes direct opening mode magnetic field source to simulate the warship magnetic field signal of the torpedo explosive induce magnetic fuse action. The Simulating calculation shows that the magnetic field of the magnetic bait has good simulation effect; it can effectively induce the torpedo magnetic fuse.


2014 ◽  
Vol 596 ◽  
pp. 67-71
Author(s):  
Xiu Quan Liu ◽  
Yan Hong Li

the magnetic dipole model of the cylindrical permanent magnet was introduced. Then, based on Ansoft software, the simulation model of the cylindrical permanent magnet was established, and the influence of some parameters, such as the height, radius and magnetization direction on the magnetic induction intensity ,were studied; at the same time, under these two models the calculation was compared, the result shows the the magnetic dipole model is applied on condition that distance is nine times greater than the cylindrical permanent magnet size.


2016 ◽  
Author(s):  
Vira Pronenko ◽  
Fedir Dudkin

Abstract. The profession of a miner is one of the most dangerous in the world. Among the main causes of the fatalities in the underground coal mines is the untimely alerting of the accident, as well as the lack of information for the rescuers about the actual location of the miners after the accident. In an emergency situation (failure or destruction of underground infrastructure), personnel search behind and beneath of blockage should be provided urgently. But none of the standard technologies (RFID, DECT, WiFi, emitting cable), which use the stationary technical devices in mines, provides the information about the people location caught by accident with necessary precision. The only technology that is able to provide guaranteed delivery of messages about the accident to the mine personnel, regardless of their location and under any destruction in the mine, is low-frequency radio technology able to operate through the thickness of rocks even if it is wet. The proposed new system for miners localization is based on solving the inverse problem that allows the magnetic field source coordinates determining using the data of magnetic field measurements. This approach is based on the measurement of the magnetic field radiated by the miner's responder beacon using two fixed and spaced three-component magnetic field receivers and next the inverse problem solution. As a result, the working model of the system for miner's beacon search and localization (MILES – miner's location emergency system) was developed and successfully tested. The paper presents the peculiarities of this development and the results of experimental tests.


Author(s):  
Karim El-Rayes ◽  
Ahmed Abdel-Aziz ◽  
Eihab M. Abdel-Rahman ◽  
Raafat Mansour ◽  
Ehab El-Saadany

Energy harvesting from vibrations offers a prevailing non-traditional energy source. We introduce a novel electromagnetic transduction mechanism that can be used to harvest low-frequency vibrations. The mechanism induces a current in a coil by disrupting the electromagnetic field around the coil. The harvester is composed of a coil wound around track and surrounded by a magnetic field. The coil and magnetic field source remain stationary while a ferromagnetic ball material moves freely along the track cutting the field lines, disrupting the magnetic field, and inducing current in the coil. We present a prototype and experiments validating our energy harvesting mechanism as well as a model for the energy harvester. We find that our harvester can generate as much as 2mV and 21 μW from base vibrations of 0.9g amplitude. Our harvester demonstrates low-frequency harvesting with a center frequency as low as 9.4 Hz and a 3db harvesting bandwidth as wide as 5.8 Hz.


Author(s):  
A. Kolano-Burian ◽  
R. Kolano ◽  
M. Hreczka ◽  
M. Steczkowska-Kempka ◽  
P. Zackiewicz ◽  
...  

2016 ◽  
Vol 5 (2) ◽  
pp. 561-566 ◽  
Author(s):  
Vira Pronenko ◽  
Fedir Dudkin

Abstract. The profession of a miner is one of the most dangerous in the world. Among the main causes of fatalities in underground coal mines are the delayed alert of the accident and the lack of information regarding the actual location of the miners after the accident. In an emergency situation (failure or destruction of underground infrastructure), personnel search behind and beneath blockage needs to be performed urgently. However, none of the standard technologies – radio-frequency identification (RFID), Digital Enhanced Cordless Telecommunications (DECT), Wi-Fi, emitting cables, which use the stationary technical devices in mines – provide information about the miners location with the necessary precision. The only technology that is able to provide guaranteed delivery of messages to mine personnel, regardless of their location and under any destruction in the mine, is low-frequency radio technology, which is able to operate through the thickness of rocks even if they are wet. The proposed new system for miner localization is based on solving the inverse problem of determining the magnetic field source coordinates using the data of magnetic field measurements. This approach is based on the measurement of the magnetic field radiated by the miner's responder beacon using two fixed and spaced three-component magnetic field receivers and the inverse problem solution. As a result, a working model of the system for miner's beacon search and localization (MILES – MIner's Location Emergency System) was developed and successfully tested. This paper presents the most important aspects of this development and the results of experimental tests.


2016 ◽  
Vol 674 ◽  
pp. 41-47 ◽  
Author(s):  
Viktor Mironov ◽  
Tarmo Koppel ◽  
Mihails Lisicins ◽  
Irina Boiko

In the present work the methods for producing flat and three-dimensional shielding screens from the perforated steel tape are proposed. The possible application variants of mentioned screens are offered and analyzed. Main attention is given for producing one-layer and multi-layer screens with cellular structure due to its relatively low weight and technological elasticity – complex three-dimensional structures could be done successfully.Examples of produced shielding screens from the perforated steel tape for protection from electromagnetic fields in different frequency range are offered and tested. The efficiency of a shielding material was determined by measuring the magnetic field before and after applying the shielding material. Distribution of the magnetic field behind the shielding screen was determined by software vector mapping. Shielding efficiency was measured for 1) a three-layer perforated steel screen; 2) an one-layer perforated steel screen - shielding screen was placed in between the magnetic field source and the measurement point forming a two dimensional screen; 3) copper composite sprayed screen. During experimental investigation it was established, that a three-layer perforated steel screen application allowed the 27% reduction in the magnetic field, while one-layer perforated steel screen gave only 12% reduction. Copper composite sprayed screen reduced magnetic field by 15%.Recommendations for producing the multi-layer perforated steel screen accordingly to shielding efficiency are elaborated and laid down. The discussed material carries also ecological significance, since the material is produced by waste products (after stumping etc.). Therefore the production of such materials comes with reduced cost both in light of capital expenditures and ecological footprint.


Sign in / Sign up

Export Citation Format

Share Document