Measurement of Angular Motion Parameters Exhibited by the Mirror of a Scanning Device

Author(s):  
P. A. Pavlov ◽  
E. M. Ivashchenko
2021 ◽  
pp. 3-7
Author(s):  
Petr A. Pavlov ◽  
Elena M. Ivashchenko

A scanning device for a space-based environmental monitoring system has been investigated. The main attention is paid to the study of the parameters of the angular motion of the mirror of the scanning device, the uniformity of rotation of which largely determines the quality of the image of the Earth's surface. The principle and results of measuring the parameters of the mirror rotation carried out in a wide angular range are considered. The measurements were performed using a dynamic goniometer-autocollimator, which has been calibrated at the State Standard of Plane Angle Unit GET 22-2014. The repeatability of the average angular velocity of the scanning device mirror and the repeatability of the initial scanning angle are calculated. Nonstationarity in mathematical expectation and variance in random deviations of the angular motion of the mirror from the linear law of scanning is noted. The use of wavelet analysis revealed the frequency of excitation of oscillations in the low-frequency region of the spectrum. The possibility of using the a dynamic goniometer-autocollimator for measuring not only the angular position of the scanning device mirror, but also the angular velocity is shown.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Dmitry L. Zaitsev ◽  
Vadim M. Agafonov ◽  
Iliya A. Evseev

The main objective of the paper is to study the system errors of azimuth determination in the dynamic scheme of north finding on the base of the molecular-electronic sensitive angular motion sensor. Introduced theoretical and experimental study of some error compensation methods. Investigated the most significant system inaccuracies of azimuth determination depended on MET sensor g-sensitivity factor and the occurrence of rotation uneven in the system and as a result of tiny angular accelerations which appeared. Methods and algorithms of error reduce are experimentally verified.


2013 ◽  
Vol 373-375 ◽  
pp. 38-42 ◽  
Author(s):  
A.I. Artyunin ◽  
S.V. Eliseyev

The results of investigation of a new phenomenon represented by the revolving of stiff rotor in elastic supports with four self-balanced pendulums are discussed in the article. The rotor is rotating with some operating velocity but the pendulums are moving with a frequency which equals one from two critical velocities of the rotor rotation connected with its linear or angular motion parameters. The procedure of mathematical models construction for system with eight degrees of freedom is offered. Dynamical interactions’ properties between partial systems with definite forms of a motion self-organization in a freely suspended pendulum group are discussed.


1975 ◽  
Vol 26 ◽  
pp. 87-92
Author(s):  
P. L. Bender

AbstractFive important geodynamical quantities which are closely linked are: 1) motions of points on the Earth’s surface; 2)polar motion; 3) changes in UT1-UTC; 4) nutation; and 5) motion of the geocenter. For each of these we expect to achieve measurements in the near future which have an accuracy of 1 to 3 cm or 0.3 to 1 milliarcsec.From a metrological point of view, one can say simply: “Measure each quantity against whichever coordinate system you can make the most accurate measurements with respect to”. I believe that this statement should serve as a guiding principle for the recommendations of the colloquium. However, it also is important that the coordinate systems help to provide a clear separation between the different phenomena of interest, and correspond closely to the conceptual definitions in terms of which geophysicists think about the phenomena.In any discussion of angular motion in space, both a “body-fixed” system and a “space-fixed” system are used. Some relevant types of coordinate systems, reference directions, or reference points which have been considered are: 1) celestial systems based on optical star catalogs, distant galaxies, radio source catalogs, or the Moon and inner planets; 2) the Earth’s axis of rotation, which defines a line through the Earth as well as a celestial reference direction; 3) the geocenter; and 4) “quasi-Earth-fixed” coordinate systems.When a geophysicists discusses UT1 and polar motion, he usually is thinking of the angular motion of the main part of the mantle with respect to an inertial frame and to the direction of the spin axis. Since the velocities of relative motion in most of the mantle are expectd to be extremely small, even if “substantial” deep convection is occurring, the conceptual “quasi-Earth-fixed” reference frame seems well defined. Methods for realizing a close approximation to this frame fortunately exist. Hopefully, this colloquium will recommend procedures for establishing and maintaining such a system for use in geodynamics. Motion of points on the Earth’s surface and of the geocenter can be measured against such a system with the full accuracy of the new techniques.The situation with respect to celestial reference frames is different. The various measurement techniques give changes in the orientation of the Earth, relative to different systems, so that we would like to know the relative motions of the systems in order to compare the results. However, there does not appear to be a need for defining any new system. Subjective figures of merit for the various system dependon both the accuracy with which measurements can be made against them and the degree to which they can be related to inertial systems.The main coordinate system requirement related to the 5 geodynamic quantities discussed in this talk is thus for the establishment and maintenance of a “quasi-Earth-fixed” coordinate system which closely approximates the motion of the main part of the mantle. Changes in the orientation of this system with respect to the various celestial systems can be determined by both the new and the conventional techniques, provided that some knowledge of changes in the local vertical is available. Changes in the axis of rotation and in the geocenter with respect to this system also can be obtained, as well as measurements of nutation.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 402
Author(s):  
Ning Liu ◽  
Tianqi Tian ◽  
Zhong Su ◽  
Wenhao Qi

This paper studies the measurement of motion parameters of a parachute scanning platform. The movement of a parachute scanning platform has fast rotational velocity and a complex attitude. Therefore, traditional measurement methods cannot measure the motion parameters accurately, and thus fail to satisfy the requirements for the measurement of parachute scanning platform motion parameters. In order to solve these problems, a method for measuring the motion parameters of a parachute scanning platform based on a combination of magnetic and inertial sensors is proposed in this paper. First, scanning motion characteristics of a parachute-terminal-sensitive projectile are analyzed. Next, a high-precision parachute scanning platform attitude measurement device is designed to obtain the data of magnetic and inertial sensors. Then the extended Kalman filter is used to filter and observe errors. The scanning angle, the scanning angle velocity, the falling velocity, and the 2D scanning attitude are obtained. Finally, the accuracy and feasibility of the algorithm are analyzed and validated by MATLAB simulation, semi-physical simulation, and airdrop experiments. The presented research results can provide helpful references for the design and analysis of parachute scanning platforms, which can reduce development time and cost.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Barmak Honarvar Shakibaei Asli ◽  
Yifan Zhao ◽  
John Ahmet Erkoyuncu

AbstractHigh-quality medical ultrasound imaging is definitely concerning motion blur, while medical image analysis requires motionless and accurate data acquired by sonographers. The main idea of this paper is to establish some motion blur invariant in both frequency and moment domain to estimate the motion parameters of ultrasound images. We propose a discrete model of point spread function of motion blur convolution based on the Dirac delta function to simplify the analysis of motion invariant in frequency and moment domain. This model paves the way for estimating the motion angle and length in terms of the proposed invariant features. In this research, the performance of the proposed schemes is compared with other state-of-the-art existing methods of image deblurring. The experimental study performs using fetal phantom images and clinical fetal ultrasound images as well as breast scans. Moreover, to validate the accuracy of the proposed experimental framework, we apply two image quality assessment methods as no-reference and full-reference to show the robustness of the proposed algorithms compared to the well-known approaches.


1984 ◽  
Vol 18 (1) ◽  
pp. 25-25
Author(s):  
B. L. Yen ◽  
T. S. Huang
Keyword(s):  

2014 ◽  
Vol 1048 ◽  
pp. 173-177 ◽  
Author(s):  
Ying Mei Wang ◽  
Yan Mei Li ◽  
Wan Yue Hu

Fabric shape style is one of the most important conditions in textile appearance evaluation, and also the main factor influences customer purchasing psychology. At first, the previous fabric shape style evaluation methods are classified and summarized, measurement and evaluation method discussed from tactic and dynamic aspects. Then, companied with computer vision principle, a non-contact method for measuring fabric shape style was put forward. In this method, two high-speed CCD cameras were used to capture fabric movement dynamically, fabric sequences image were obtained in this process. Used the image processing technology include pretreatment and feature point matching to get 3D motion parameters, it can provide data supports for shape style evaluation.


Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1135
Author(s):  
Cheng ◽  
Shen ◽  
Deng ◽  
Deng

Spin-stabilized projectiles with course correction fuzes actuated by fixed canards have the problem of great coupling in both the normal and lateral directions due to intensive gyroscopic effects, which leads to inconsistent maneuverability in different directions. Due to the limited correction ability, which results from the miniaturization of the fuze and fixed canards, a target-aiming method is proposed here to make full use of the correction ability of the canards. From analysis on how the canards work and building an angular motion model, the correction characteristics of a spinning projectile with fixed canards have been studied, and the inconsistent maneuverability in different directions of the projectile has been explained and used to help establish the proposed target aiming method. Hardware-in-the-loop simulation based on a 155 mm howitzer shows that when the correction ability of fixed canards is unchanged, the proposed method can improve the striking accuracy by more than 20% when compared to the traditional method.


Sign in / Sign up

Export Citation Format

Share Document