scholarly journals Efficient feature selection techniques for sentiment analysis

2019 ◽  
Vol 79 (9-10) ◽  
pp. 6313-6335
Author(s):  
Avinash Madasu ◽  
Sivasankar Elango
2019 ◽  
Vol 23 (1) ◽  
pp. 159-189 ◽  
Author(s):  
Siti Rohaidah Ahmad ◽  
Azuraliza Abu Bakar ◽  
Mohd Ridzwan Yaakub

2019 ◽  
Vol 8 (3) ◽  
pp. 2138-2143

Aspect-oriented sentiment analysis is done in two phases like aspect term identification from review and determining related opinion. To carry out this analysis, features play an important role to determine the accuracy of the model. Feature extraction and feature selection techniques contribute to increase the classification accuracy. Feature selection strategies reduce computation time, improve prediction performance, and provides a higher understanding of the information in machine learning and pattern recognition applications etc. This work specifically focuses on aspect extraction from restaurant review dataset but can also be used for other datasets. In this system, we proposed a multivariate filter strategy of feature selection which works on lemma features. This method helps to select relevant features and avoid redundant ones. Initially, the extracted features undergo preprocessing and then the “term-frequency matrix” is generated which contains the occurrence count of features with respect to aspect category. In the next phase, different feature selection strategies are applied which includes selecting features based on correlation, weighted term frequency and weighted term frequency with the correlation coefficient. The performance of weighted term frequency with correlation coefficient approach is compared with the existing system and shows significant improvement in F1 score


2022 ◽  
Vol 12 (1) ◽  
pp. 0-0

This paper proposes a novel hybrid framework with BWO based feature reduction technique which combines the merits of both machine learning and lexicon-based approaches to attain better scalability and accuracy. The scalability problem arises due to noisy, irrelevant and unique features present in the extracted features from proposed approach, which can be eliminated by adopting an effective feature reduction technique. In our proposed BWO approach, without changing the accuracy (90%), the feature-set size is reduced up to 43%. The proposed feature selection technique outperforms other commonly used PSO and GAbased feature selection techniques with reduced computation time of 21 sec. Moreover, our sentiment analysis approach is analysed using performance metrices such as precision, recall, F-measure, and computation time. Many organizations can use these online reviews to make well-informed decisions towards the users’ interests and preferences to enhance customer satisfaction, product quality and to find the aspects to improve the products, thereby to generate more profits.


Author(s):  
Midde Venkateswarlu Naik ◽  
D. Vasumathi ◽  
A.P. Siva Kumar

Aims: The proposed research work is on an evolutionary enhanced method for sentiment or emotion classification on unstructured review text in the big data field. The sentiment analysis plays a vital role for current generation of people for extracting valid decision points about any aspect such as movie ratings, education institute or politics ratings, etc. The proposed hybrid approach combined the optimal feature selection using Particle Swarm Optimization (PSO) and sentiment classification through Support Vector Machine (SVM). The current approach performance is evaluated with statistical measures, such as precision, recall, sensitivity, specificity, and was compared with the existing approaches. The earlier authors have achieved an accuracy of sentiment classifier in the English text up to 94% as of now. In the proposed scheme, an average accuracy of sentiment classifier on distinguishing datasets outperformed as 99% by tuning various parameters of SVM, such as constant c value and kernel gamma value in association with PSO optimization technique. The proposed method utilized three datasets, such as airline sentiment data, weather, and global warming datasets, that are publically available. The current experiment produced results that are trained and tested based on 10- Fold Cross-Validations (FCV) and confusion matrix for predicting sentiment classifier accuracy. Background: The sentiment analysis plays a vital role for current generation people for extracting valid decisions about any aspect such as movie rating, education institute or even politics ratings, etc. Sentiment Analysis (SA) or opinion mining has become fascinated scientifically as a research domain for the present environment. The key area is sentiment classification on semi-structured or unstructured data in distinguish languages, which has become a major research aspect. User-Generated Content [UGC] from distinguishing sources has been hiked significantly with rapid growth in a web environment. The huge user-generated data over social media provides substantial value for discovering hidden knowledge or correlations, patterns, and trends or sentiment extraction about any specific entity. SA is a computational analysis to determine the actual opinion of an entity which is expressed in terms of text. SA is also called as computation of emotional polarity expressed over social media as natural text in miscellaneous languages. Usually, the automatic superlative sentiment classifier model depends on feature selection and classification algorithms. Methods: The proposed work used Support vector machine as classification technique and particle swarm optimization technique as feature selection purpose. In this methodology, we tune various permutations and combination parameters in order to obtain expected desired results with kernel and without kernel technique for sentiment classification on three datasets, including airline, global warming, weather sentiment datasets, that are freely hosted for research practices. Results: In the proposed scheme, The proposed method has outperformed with 99.2% of average accuracy to classify the sentiment on different datasets, among other machine learning techniques. The attained high accuracy in classifying sentiment or opinion about review text proves superior effectiveness over existing sentiment classifiers. The current experiment produced results that are trained and tested based on 10- Fold Cross-Validations (FCV) and confusion matrix for predicting sentiment classifier accuracy. Conclusion: The objective of the research issue sentiment classifier accuracy has been hiked with the help of Kernel-based Support Vector Machine (SVM) based on parameter optimization. The optimal feature selection to classify sentiment or opinion towards review documents has been determined with the help of a particle swarm optimization approach. The proposed method utilized three datasets to simulate the results, such as airline sentiment data, weather sentiment data, and global warming data that are freely available datasets.


2021 ◽  
Vol 25 (1) ◽  
pp. 21-34
Author(s):  
Rafael B. Pereira ◽  
Alexandre Plastino ◽  
Bianca Zadrozny ◽  
Luiz H.C. Merschmann

In many important application domains, such as text categorization, biomolecular analysis, scene or video classification and medical diagnosis, instances are naturally associated with more than one class label, giving rise to multi-label classification problems. This has led, in recent years, to a substantial amount of research in multi-label classification. More specifically, feature selection methods have been developed to allow the identification of relevant and informative features for multi-label classification. This work presents a new feature selection method based on the lazy feature selection paradigm and specific for the multi-label context. Experimental results show that the proposed technique is competitive when compared to multi-label feature selection techniques currently used in the literature, and is clearly more scalable, in a scenario where there is an increasing amount of data.


Healthcare ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 884
Author(s):  
Antonio García-Domínguez ◽  
Carlos E. Galván-Tejada ◽  
Ramón F. Brena ◽  
Antonio A. Aguileta ◽  
Jorge I. Galván-Tejada ◽  
...  

Children’s healthcare is a relevant issue, especially the prevention of domestic accidents, since it has even been defined as a global health problem. Children’s activity classification generally uses sensors embedded in children’s clothing, which can lead to erroneous measurements for possible damage or mishandling. Having a non-invasive data source for a children’s activity classification model provides reliability to the monitoring system where it is applied. This work proposes the use of environmental sound as a data source for the generation of children’s activity classification models, implementing feature selection methods and classification techniques based on Bayesian networks, focused on the recognition of potentially triggering activities of domestic accidents, applicable in child monitoring systems. Two feature selection techniques were used: the Akaike criterion and genetic algorithms. Likewise, models were generated using three classifiers: naive Bayes, semi-naive Bayes and tree-augmented naive Bayes. The generated models, combining the methods of feature selection and the classifiers used, present accuracy of greater than 97% for most of them, with which we can conclude the efficiency of the proposal of the present work in the recognition of potentially detonating activities of domestic accidents.


Sign in / Sign up

Export Citation Format

Share Document