Effect of surface charge on the cellular uptake of fluorescent magnetic nanoparticles

2012 ◽  
Vol 14 (10) ◽  
Author(s):  
Slavko Kralj ◽  
Matija Rojnik ◽  
Rok Romih ◽  
Marko Jagodič ◽  
Janko Kos ◽  
...  
Nano LIFE ◽  
2013 ◽  
Vol 03 (04) ◽  
pp. 1343003 ◽  
Author(s):  
BRANDON MATTIX ◽  
THOMAS MOORE ◽  
OLGA UVAROV ◽  
SAMUEL POLLARD ◽  
LAUREN O'DONNELL ◽  
...  

Current chemotherapy treatments are limited by poor drug solubility, rapid drug clearance and systemic side effects. Additionally, drug penetration into solid tumors is limited by physical diffusion barriers [e.g., extracellular matrix (ECM)]. Nanoparticle (NP) blood circulation half-life, biodistribution and ability to cross extracellular and cellular barriers will be dictated by NP composition, size, shape and surface functionality. Here, we investigated the effect of surface charge of poly(lactide)-poly(ethylene glycol) NPs on mediating cellular interaction. Polymeric NPs of equal sizes were used that had two different surface functionalities: negatively charged carboxyl ( COOH ) and neutral charged methoxy ( OCH 3). Cellular uptake studies showed significantly higher uptake in human brain cancer cells compared to noncancerous human brain cells, and negatively charged COOH NPs were uptaken more than neutral OCH 3 NPs in 2D culture. NPs were also able to load and control the release of paclitaxel (PTX) over 19 days. Toxicity studies in U-87 glioblastoma cells showed that PTX-loaded NPs were effective drug delivery vehicles. Effect of surface charge on NP interaction with the ECM was investigated using collagen in a 3D cellular uptake model, as collagen content varies with the type of cancer and the stage of the disease compared to normal tissues. Results demonstrated that NPs can effectively diffuse across an ECM barrier and into cells, but NP mobility is dictated by surface charge. In vivo biodistribution of OCH 3 NPs in intracranial tumor xenografts showed that NPs more easily accumulated in tumors with less collagen. These results indicate that a robust understanding of NP interaction with various tumor environments can lead to more effective patient-tailored therapies.


2017 ◽  
Vol 8 ◽  
pp. 1-5 ◽  
Author(s):  
Jefunnie S. Matahum ◽  
Chao-Ming Su ◽  
Wei-Jie Wang ◽  
Shyh-Liang Lou ◽  
Tzong-Rong Ger

2010 ◽  
Vol 2 (10) ◽  
pp. 2924-2932 ◽  
Author(s):  
Khaled A. Mahmoud ◽  
Jimmy A. Mena ◽  
Keith B. Male ◽  
Sabahudin Hrapovic ◽  
Amine Kamen ◽  
...  

2013 ◽  
Vol 31 (9) ◽  
pp. 1299-1309 ◽  
Author(s):  
Dan-hua Zhou ◽  
Jie Zhang ◽  
Guan Zhang ◽  
Zhi-hua Gan

2020 ◽  
Vol 35 ◽  
pp. 100243 ◽  
Author(s):  
Muhammad Usman ◽  
Yumna Zaheer ◽  
Muhammad Rizwan Younis ◽  
Ruken Esra Demirdogen ◽  
Syed Zajif Hussain ◽  
...  

2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Peng Zhang ◽  
Daoyuan Chen ◽  
Lin Li ◽  
Kaoxiang Sun

AbstractSurface charge of biological and medical nanocarriers has been demonstrated to play an important role in cellular uptake. Owing to the unique physicochemical properties, charge-reversal delivery strategy has rapidly developed as a promising approach for drug delivery application, especially for cancer treatment. Charge-reversal nanocarriers are neutral/negatively charged at physiological conditions while could be triggered to positively charged by specific stimuli (i.e., pH, redox, ROS, enzyme, light or temperature) to achieve the prolonged blood circulation and enhanced tumor cellular uptake, thus to potentiate the antitumor effects of delivered therapeutic agents. In this review, we comprehensively summarized the recent advances of charge-reversal nanocarriers, including: (i) the effect of surface charge on cellular uptake; (ii) charge-conversion mechanisms responding to several specific stimuli; (iii) relation between the chemical structure and charge reversal activity; and (iv) polymeric materials that are commonly applied in the charge-reversal delivery systems. Graphical Abstract


2021 ◽  
pp. 152225
Author(s):  
Youna Kim ◽  
Moonhyun Choi ◽  
Jiwoong Heo ◽  
Sungwon Jung ◽  
Dongwon Ka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document