Aurora kinase inhibitors attached to iron oxide nanoparticles enhances inhibition of the growth of liver cancer cells

2015 ◽  
Vol 17 (6) ◽  
Author(s):  
Xiquan Zhang ◽  
Li Xie ◽  
Ming Zheng ◽  
Juan Yao ◽  
Lina Song ◽  
...  
Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1873 ◽  
Author(s):  
Oleg Lunov ◽  
Mariia Uzhytchak ◽  
Barbora Smolková ◽  
Mariia Lunova ◽  
Milan Jirsa ◽  
...  

Lysosome-activated apoptosis represents an alternative method of overcoming tumor resistance compared to traditional forms of treatment. Pulsed magnetic fields open a new avenue for controlled and targeted initiation of lysosomal permeabilization in cancer cells via mechanical actuation of magnetic nanomaterials. In this study we used a noninvasive tool; namely, a benchtop pulsed magnetic system, which enabled remote activation of apoptosis in liver cancer cells. The magnetic system we designed represents a platform that can be used in a wide range of biomedical applications. We show that liver cancer cells can be loaded with superparamagnetic iron oxide nanoparticles (SPIONs). SPIONs retained in lysosomal compartments can be effectively actuated with a high intensity (up to 8 T), short pulse width (~15 µs), pulsed magnetic field (PMF), resulting in lysosomal membrane permeabilization (LMP) in cancer cells. We revealed that SPION-loaded lysosomes undergo LMP by assessing an increase in the cytosolic activity of the lysosomal cathepsin B. The extent of cell death induced by LMP correlated with the accumulation of reactive oxygen species in cells. LMP was achieved for estimated forces of 700 pN and higher. Furthermore, we validated our approach on a three-dimensional cellular culture model to be able to mimic in vivo conditions. Overall, our results show that PMF treatment of SPION-loaded lysosomes can be utilized as a noninvasive tool to remotely induce apoptosis.


2020 ◽  
Vol 16 (4) ◽  
pp. 337-343
Author(s):  
Shaimaa E. Abdel-Ghany ◽  
Eman El-Sayed ◽  
Nour Ashraf ◽  
Nada Mokhtar ◽  
Amany Alqosaibi ◽  
...  

Background: Hepatocellular carcinoma is the second leading cause of cancer-related deaths among other types of cancer due to lack of effective treatments and late diagnosis. Nanocarriers represent a novel method to deliver chemotherapeutic drugs, enhancing their bioavailability and stability. Methods: In the present study, we loaded gold nanoparticles (AuNPs) and titanium oxide nanoparticles (TiO2NPs) with ERL to investigate the efficiency of the formed composite in inducing apoptosis in HepG2 liver cancer cells. Cytotoxicity was assessed using MTT assay and cell phase distribution was assessed by flow cytometry along with apoptosis detection. Results: Data obtained indicated the efficiency of the formed composite to significantly induce cell death and arrest cell cycle and G2/M phase. IRF4 was downregulated after treatment with loaded ERL. Conclusion: Our data showed that loading ERL on TiO2NPs was more efficient than AuNPs. However, both nanocarriers were efficient compared with control.


2020 ◽  
Vol 13 ◽  
Author(s):  
Selin Yılmaz ◽  
Çiğdem İçhedef ◽  
Kadriye Buşra Karatay ◽  
Serap Teksöz

Backgorund: Superparamagnetic iron oxide nanoparticles (SPIONs) have been extensively used for targeted drug delivery systems due to their unique magnetic properties. Objective: In this study, it’s aimed to develop a novel targeted 99mTc radiolabeled polymeric drug delivery system for Gemcitabine (GEM). Methods: Gemcitabine, an anticancer agent, was encapsulated into polymer nanoparticles (PLGA) together with iron oxide nanoparticles via double emulsion technique and then labeled with 99mTc. SPIONs were synthesized by reduction–coprecipitation method and encapsulated with oleic acid for surface modification. Size distribution and the morphology of the synthesized nanoparticles were caharacterized by dynamic light scattering(DLS)and scanning electron microscopy(SEM), respectively. Radiolabeling yield of SPION-PLGAGEM nanoparticles were determined via Thin Layer Radio Chromatography (TLRC). Cytotoxicity of GEM loaded SPION-PLGA were investigated on MDA-MB-231 and MCF7 breast cancer cells in vitro. Results: SEM images displayed that the average size of the drug-free nanoparticles was 40 nm and the size of the drug-loaded nanoparticles was 50 nm. The diameter of nanoparticles were determined as 366.6 nm by DLS, while zeta potential was found as-29 mV. SPION was successfully coated with PLGA, which was confirmed by FTIR. GEM encapsulation efficiency of SPION-PLGA was calculated as 4±0.16 % by means of HPLC. Radiolabeling yield of SPION-PLGA-GEM nanoparticles were determined as 97.8±1.75 % via TLRC. Cytotoxicity of GEM loaded SPION-PLGA were investigated on MDA-MB-231 and MCF7 breast cancer cells. SPION-PLGA-GEM showed high uptake on MCF-7, whilst incorporation rate was increased for both cell lines which external magnetic field application. Conclusion: 99mTc labeled SPION-PLGA nanoparticles loaded with GEM may overcome some of the obstacles in anti-cancer drug delivery because of their appropriate size, non-toxic, and supermagnetic characteristics.


2013 ◽  
Vol 19 (S2) ◽  
pp. 218-219
Author(s):  
T. Mustafa ◽  
Y. Xu ◽  
F. Watanabe ◽  
Y. Zhang ◽  
M. Asar ◽  
...  

Extended abstract of a paper presented at Microscopy and Microanalysis 2013 in Indianapolis, Indiana, USA, August 4 – August 8, 2013.


2007 ◽  
Vol 17 (16) ◽  
pp. 3043-3050 ◽  
Author(s):  
S. H. Wang ◽  
X. Shi ◽  
M. Van Antwerp ◽  
Z. Cao ◽  
S. D. Swanson ◽  
...  

2010 ◽  
Vol 322 (15) ◽  
pp. 2244-2250 ◽  
Author(s):  
Mar Creixell ◽  
Adriana P. Herrera ◽  
Vanessa Ayala ◽  
Magda Latorre-Esteves ◽  
Marianela Pérez-Torres ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document