An Optogenetic Study of the Electrophysiological Properties of Hippocampal Neurons in PS1-M146V Transgenic Mice (a model of Alzheimer’s disease)

2019 ◽  
Vol 49 (2) ◽  
pp. 199-207
Author(s):  
A. I. Erofeev ◽  
O. A. Zakharova ◽  
S. G. Terekhin ◽  
P. V. Plotnikova ◽  
I. B. Bezprozvanny ◽  
...  
2006 ◽  
Vol 2 ◽  
pp. S103-S103
Author(s):  
Olaf Schulte-Herbrüggen ◽  
Uwe Deicke ◽  
Uwe Otten ◽  
Dorothee Abramowski ◽  
Matthias Staufenbiel ◽  
...  

2016 ◽  
Vol 19 (10) ◽  
pp. 475-483 ◽  
Author(s):  
Selvaraju Subash ◽  
Musthafa Mohamed Essa ◽  
Nady Braidy ◽  
Ahood Al-Jabri ◽  
Ragini Vaishnav ◽  
...  

2005 ◽  
Vol 156 (2) ◽  
pp. 225-232 ◽  
Author(s):  
Elisa Ognibene ◽  
Silvia Middei ◽  
Stefania Daniele ◽  
Walter Adriani ◽  
Orlando Ghirardi ◽  
...  

2013 ◽  
Vol 781-784 ◽  
pp. 643-646
Author(s):  
Xiao Lin ◽  
Li Yu

In this study, we aim to investigate the effect of curcumin on the expression of a-synuclein in the APPswe/PS1dE9 double transgenic mice. APPswe/PS1dE9 double transgenic mice were used as AD (Alzheimer's disease) model and fed with different concentrations of curcumin every day for 6 months, then immunohistochemistry method were used to detect the expression of a-synuclein in hippocampus of mice. The expression of a-syn in hippocampal neuron was decreased significantly after treated with 0.16g/kg to 1.0g/kg curcumin, the change was apparent in dose-dependent manner (P<0.05). a-synuclein pay an important role in the genesis and development of Alzheimer's disease and decreased level of a-synuclein might contribute to the neuroprotective effect of Curcumin, which may become a new target for the prevention and treatment of Alzheimer's disease.


Nutrition ◽  
2015 ◽  
Vol 31 (1) ◽  
pp. 223-229 ◽  
Author(s):  
Selvaraju Subash ◽  
Nady Braidy ◽  
Musthafa Mohamed Essa ◽  
Al-Buraiki Zayana ◽  
Vaishnav Ragini ◽  
...  

2019 ◽  
Author(s):  
Katia Martínez-González ◽  
Azul Islas-Hernández ◽  
José Darío Martínez-Ezquerro ◽  
Federico Bermúdez-Rattoni ◽  
Paola Garcia-delaTorre

AbstractAlzheimer’s Disease (AD) is the most common cause of dementia and aging is its major risk factor. Changes in telomere length have been associated with aging and some degenerative diseases. Our aim was to explore some of the molecular changes caused by the progression of AD in a transgenic murine model (3xTg-AD; B6; 129-Psen1 <tm1Mpm> Tg (APPSwe, tauP301L) 1Lfa). Telomere length was assessed by qPCR in both brain tissue and peripheral blood cells and compared between three age groups: 5, 9, and 13 months. In addition, a possible effect of oxidative stress on telomere length and AD progression was explored. Shorter telomeres were found in blood cells of older transgenic mice compared to younger and wild type mice but no changes in telomere length in the hippocampus. An increase in oxidative stress with age was found for all strains but no correlation was found between oxidative stress and shorter telomere length for transgenic mice. Telomere length and oxidative stress are affected by AD progression in the 3xTg-AD murine model. Changes in blood cells are more noticeable than changes in brain tissue, suggesting that systemic changes can be detected early in the disease in this murine model.


2019 ◽  
Author(s):  
Devrim Kilinc ◽  
Anaïs-Camille Vreulx ◽  
Tiago Mendes ◽  
Amandine Flaig ◽  
Diego Marques-Coelho ◽  
...  

AbstractRecent meta-analyses of genome-wide association studies identified a number of genetic risk factors of Alzheimer’s disease; however, little is known about the mechanisms by which they contribute to the pathological process. As synapse loss is observed at the earliest stage of Alzheimer’s disease, deciphering the impact of Alzheimer’s risk genes on synapse formation and maintenance is of great interest. In this paper, we report a microfluidic co-culture device that physically isolates synapses from pre- and postsynaptic neurons and chronically exposes them to toxic amyloid-beta (Aβ) peptides secreted by model cell lines overexpressing wild-type or mutated (V717I) amyloid precursor protein (APP). Co-culture with cells overexpressing mutated APP exposed the synapses of primary hippocampal neurons to Aβ1-42 molecules at nanomolar concentrations and induced a significant decrease in synaptic connectivity, as evidenced by distance-based assignment of postsynaptic puncta to presynaptic puncta. Treating the cells with antibodies that target different forms of Aβ suggested that low molecular weight oligomers are the likely culprit. As proof of concept, we demonstrate that overexpression of protein tyrosine kinase 2 beta (Pyk2) –an Alzheimer’s disease genetic risk factor involved in synaptic plasticity and shown to decrease in Alzheimer’s disease brains at gene expression and protein levels–selectively in postsynaptic neurons is protective against Aβ1-42-induced synaptotoxicity. In summary, our lab-on-a-chip device provides a physiologically-relevant model of Alzheimer’s disease-related synaptotoxicity, optimal for assessing the impact of risk genes in pre- and postsynaptic compartments.


2015 ◽  
Vol 96 (1) ◽  
pp. 50-55 ◽  
Author(s):  
A V Leushina ◽  
L F Nurullin ◽  
E O Petukhova ◽  
A L Zefirov ◽  
M A Mukhamedyarov

Aim. Study is aimed to investigate contractility impairments and receptor mechanisms of adrenergic regulation of myocardium inotropic function in Alzheimer’s disease model on transgenic mice.Methods. Experiments were performed on isolated preparations of atria and ventricles myocardium of mice. Transgenic mice of B6C3-Tg(APP695)85Dbo Tg(PSENI)85Dbo genotype were used as animal model of Alzheimer’s disease. Contractile responses of myocardium were registered by conventional myographic technique in isometric conditions. To evaluate the expression of adrenergic receptors, immunofluorescence staining of myocardium with specific antibodies was performed.Results. Transgenic mice showed not only a decreased effect of norepinephrine on myocardium inotropic function but also the inversion of the effect of norepinephrine - the use of 10-5-10-4 M of norepinephrine decreased myocardium inotropic function. Immunofluorescent staining showed decrease of expression of β1- and especially β2-adrenergic receptors ventricular myocardium of transgenic mice comparing to wild type mice. Adrenergic deregulation was registered in ventricles, but not in atria. The features of adrenergic regulatory mechanisms of myocardial contractility in transgenic APP/PS1 mice aged 8-10 months are specific, although somewhat similar to wild type mice aged 8-10 months, and are evidently due to Alzheimer’s disease. The inversion of norepinephrine inotropic effect (from positive to negative) may be explained by switching the intracellular cascade pathway of β2-adrenergic receptors effects to another type of G-protein.Conclusion. The results indicate that peripheral adrenergic mechanisms of myocardial contractility regulation are impaired in studied transgenic mice model of Alzheimer’s disease. Obtained data widen our understanding of Alzheimer’s disease pathogenesis, as well as our conception of relations between cardiovascular diseases and neurodegeneration.


Sign in / Sign up

Export Citation Format

Share Document