Development and Structure of the Nervous System in Phoronids: Evolutionary Significance

Author(s):  
E. N. Temereva
2005 ◽  
Vol 83 (1) ◽  
pp. 122-150 ◽  
Author(s):  
Helmut Wicht ◽  
Thurston C Lacalli

Amphioxus neuroanatomy is important not just in its own right but also for the insights it provides regarding the evolutionary origin and basic organization of the vertebrate nervous system. This review summarizes the overall layout of the central nervous system (CNS), peripheral nerves, and nerve plexuses in amphioxus, and what is currently known of their histology and cell types, with special attention to new information on the anterior nerve cord. The intercalated region (IR) is of special functional and evolutionary interest. It extends caudally to the end of somite 4, traditionally considered the limit of the brain-like region of the amphioxus CNS, and is notable for the presence of a number of migrated cell groups. Unlike most other neurons in the cord, these migrated cells detach from the ventricular lumen and move into the adjacent neuropile, much as developing neurons do in vertebrates. The larval nervous system is also considered, as there is a wealth of new data on the organization and cell types of the anterior nerve cord in young larvae, based on detailed electron microscopical analyses and nerve tracing studies, and an emerging consensus regarding how this region relates to the vertebrate brain. Much less is known about the intervening period of the life history, i.e., the period between the young larva and the adult, but a great deal of neural development must occur during this time to generate a fully mature nervous system. It is especially interesting that the vertebrate counterparts of at least some postembryonic events of amphioxus neurogenesis occur, in vertebrates, in the embryo. The implication is that the whole of the postembryonic phase of neural development in amphioxus needs to be considered when making phylogenetic comparisons. Yet this is a period about which almost nothing is known. Considering this, plus the number of new molecular and immunocytochemical techniques now available to researchers, there is no shortage of worthwhile research topics using amphioxus, of whatever stage, as a subject.


2019 ◽  
Vol 42 ◽  
Author(s):  
Kevin B. Clark

Abstract Some neurotropic enteroviruses hijack Trojan horse/raft commensal gut bacteria to render devastating biomimicking cryptic attacks on human/animal hosts. Such virus-microbe interactions manipulate hosts’ gut-brain axes with accompanying infection-cycle-optimizing central nervous system (CNS) disturbances, including severe neurodevelopmental, neuromotor, and neuropsychiatric conditions. Co-opted bacteria thus indirectly influence host health, development, behavior, and mind as possible “fair-weather-friend” symbionts, switching from commensal to context-dependent pathogen-like strategies benefiting gut-bacteria fitness.


Author(s):  
Gladys Harrison

With the advent of the space age and the need to determine the requirements for a space cabin atmosphere, oxygen effects came into increased importance, even though these effects have been the subject of continuous research for many years. In fact, Priestly initiated oxygen research when in 1775 he published his results of isolating oxygen and described the effects of breathing it on himself and two mice, the only creatures to have had the “privilege” of breathing this “pure air”.Early studies had demonstrated the central nervous system effects at pressures above one atmosphere. Light microscopy revealed extensive damage to the lungs at one atmosphere. These changes which included perivascular and peribronchial edema, focal hemorrhage, rupture of the alveolar septa, and widespread edema, resulted in death of the animal in less than one week. The severity of the symptoms differed between species and was age dependent, with young animals being more resistant.


Author(s):  
Wiktor Djaczenko ◽  
Carmen Calenda Cimmino

The simplicity of the developing nervous system of oligochaetes makes of it an excellent model for the study of the relationships between glia and neurons. In the present communication we describe the relationships between glia and neurons in the early periods of post-embryonic development in some species of oligochaetes.Tubifex tubifex (Mull. ) and Octolasium complanatum (Dugès) specimens starting from 0. 3 mm of body length were collected from laboratory cultures divided into three groups each group fixed separately by one of the following methods: (a) 4% glutaraldehyde and 1% acrolein fixation followed by osmium tetroxide, (b) TAPO technique, (c) ruthenium red method.Our observations concern the early period of the postembryonic development of the nervous system in oligochaetes. During this period neurons occupy fixed positions in the body the only observable change being the increase in volume of their perikaryons. Perikaryons of glial cells were located at some distance from neurons. Long cytoplasmic processes of glial cells tended to approach the neurons. The superimposed contours of glial cell processes designed from electron micrographs, taken at the same magnification, typical for five successive growth stages of the nervous system of Octolasium complanatum are shown in Fig. 1. Neuron is designed symbolically to facilitate the understanding of the kinetics of the growth process.


Author(s):  
John L.Beggs ◽  
John D. Waggener ◽  
Wanda Miller ◽  
Jane Watkins

Studies using mesenteric and ear chamber preparations have shown that interendothelial junctions provide the route for neutrophil emigration during inflammation. The term emigration refers to the passage of white blood cells across the endothelium from the vascular lumen. Although the precise pathway of transendo- thelial emigration in the central nervous system (CNS) has not been resolved, the presence of different physiological and morphological (tight junctions) properties of CNS endothelium may dictate alternate emigration pathways.To study neutrophil emigration in the CNS, we induced meningitis in guinea pigs by intracisternal injection of E. coli bacteria.In this model, leptomeningeal inflammation is well developed by 3 hr. After 3 1/2 hr, animals were sacrificed by arterial perfusion with 3% phosphate buffered glutaraldehyde. Tissues from brain and spinal cord were post-fixed in 1% osmium tetroxide, dehydrated in alcohols and propylene oxide, and embedded in Epon. Thin serial sections were cut with diamond knives and examined in a Philips 300 electron microscope.


Sign in / Sign up

Export Citation Format

Share Document