Gene Expression Alterations in the Sphingolipid Metabolism Pathways during Progression of Dementia and Alzheimer’s Disease: A Shift Toward Ceramide Accumulation at the Earliest Recognizable Stages of Alzheimer’s Disease?

2007 ◽  
Vol 32 (4-5) ◽  
pp. 845-856 ◽  
Author(s):  
Pavel Katsel ◽  
Celeste Li ◽  
Vahram Haroutunian
2021 ◽  
Author(s):  
Lukas da Cruz Carvalho Iohan ◽  
Jean-Charles Lambert ◽  
Marcos Romualdo Costa

A comprehensive understanding of the pathological mechanisms involved at different stages of neurodegenerative diseases is key for the advance of preventive and disease-modifying treatments. Gene expression alterations in the diseased brain is a potential source of information about biological processes affected by pathology. In this work, we performed a systematic comparison of gene expression alterations in the brains of human patients diagnosed with Alzheimer's disease (AD) or Progressive Supranuclear Palsy (PSP) and animal models of amyloidopathy and tauopathy. Comparisons of gene/transcript expression alterations in different brain regions of AD and PSP patients at different stages of pathology using system biology approaches allowed us to pinpoint major biological processes involved in the pathogenesis of these diseases. Notably, our data reveal that gene expression alterations related to immune-inflammatory responses preponderate early, whereas those associated to synaptic transmission are mainly observed at mid-to-late pathological states in AD brains. In PSP, however, changes associated with immune-inflammatory responses and synaptic transmission overlap at early stages of disease. These two different patterns observed in AD and PSP brains are fairly recapitulated in animal models of amyloidopathy and tauopathy, respectively. Moreover, in AD, but not PSP or animal models, gene expression alterations related to RNA splicing are highly prevalent, whereas those associated with myelination are enriched both in AD and PSP, but not in animal models. Finally, we identify 12 AD and 4 PSP genetic risk factors in cell-type specific co-expression modules, thus contributing to unveil the possible role of these genes to pathogenesis.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Diego Marques-Coelho ◽  
◽  
Lukas da Cruz Carvalho Iohan ◽  
Ana Raquel Melo de Farias ◽  
Amandine Flaig ◽  
...  

AbstractAlzheimer’s disease (AD) is the leading cause of dementia in aging individuals. Yet, the pathophysiological processes involved in AD onset and progression are still poorly understood. Among numerous strategies, a comprehensive overview of gene expression alterations in the diseased brain could contribute for a better understanding of the AD pathology. In this work, we probed the differential expression of genes in different brain regions of healthy and AD adult subjects using data from three large transcriptomic studies: Mayo Clinic, Mount Sinai Brain Bank (MSBB), and ROSMAP. Using a combination of differential expression of gene and isoform switch analyses, we provide a detailed landscape of gene expression alterations in the temporal and frontal lobes, harboring brain areas affected at early and late stages of the AD pathology, respectively. Next, we took advantage of an indirect approach to assign the complex gene expression changes revealed in bulk RNAseq to individual cell types/subtypes of the adult brain. This strategy allowed us to identify previously overlooked gene expression changes in the brain of AD patients. Among these alterations, we show isoform switches in the AD causal gene amyloid-beta precursor protein (APP) and the risk gene bridging integrator 1 (BIN1), which could have important functional consequences in neuronal cells. Altogether, our work proposes a novel integrative strategy to analyze RNAseq data in AD and other neurodegenerative diseases based on both gene/transcript expression and regional/cell-type specificities.


Author(s):  
Diego Marques-Coelho ◽  
Lukas Iohan da Cruz Carvalho ◽  
Ana Raquel Melo de Farias ◽  
Jean-Charles Lambert ◽  
Marcos Romualdo Costa ◽  
...  

AbstractAlzheimer’s disease (AD) is the leading cause of dementia in aging individuals. However pathophysiological processes involved in the brain are still poorly understood. Among numerous strategies, a comprehensive overview of gene expression alterations in the diseased brain has been proposed to help for a better understanding of the disease processes. In this work, we probed the differential expression of genes in different brain regions of healthy and AD adult subjects using data from three large studies: MAYO Clinic; Mount Sinai Brain Bank (MSBB) and ROSMAP. Using a combination of differential expression of gene (DEG) and isoform switch analyses we provide a detailed landscape of gene expression alterations in the temporal and frontal lobes, harboring brain areas affected at early and late stages of the AD pathology, respectively. Next, we took advantage of an indirect approach to assign the complex gene expression changes revealed in bulk RNAseq to individual cell types of the adult brain. This strategy allowed us to identify cell type/subtype specific isoform switches in AD brains previously overlooked. This was the case, for example, for the AD causal gene APP and the risk gene BIN1, which presented isoform switches with potential functional consequences in neuronal cells. Altogether, our work proposes a novel integrative strategy to analyze RNAseq data in AD based on both gene/transcript expression and regional/cell-type specificities.


Author(s):  
Xiaoyan Sun ◽  
Qian Wang ◽  
Kaj Blennow ◽  
Henrik Zetterberg ◽  
Micheline McCarthy ◽  
...  

2020 ◽  
pp. 1-16
Author(s):  
Margaret Ryan ◽  
Valerie T.Y. Tan ◽  
Nasya Thompson ◽  
Diane Guévremont ◽  
Bruce G. Mockett ◽  
...  

Background: Secreted amyloid precursor protein-alpha (sAPPα) can enhance memory and is neurotrophic and neuroprotective across a range of disease-associated insults, including amyloid-β toxicity. In a significant step toward validating sAPPα as a therapeutic for Alzheimer’s disease (AD), we demonstrated that long-term overexpression of human sAPPα (for 8 months) in a mouse model of amyloidosis (APP/PS1) could prevent the behavioral and electrophysiological deficits that develop in these mice. Objective: To explore the underlying molecular mechanisms responsible for the significant physiological and behavioral improvements observed in sAPPα-treated APP/PS1 mice. Methods: We assessed the long-term effects on the hippocampal transcriptome following continuous lentiviral delivery of sAPPα or empty-vector to male APP/PS1 mice and wild-type controls using Affymetrix Mouse Transcriptome Assays. Data analysis was carried out within the Affymetrix Transcriptome Analysis Console and an integrated analysis of the resulting transcriptomic data was performed with Ingenuity Pathway analysis (IPA). Results: Mouse transcriptome assays revealed expected AD-associated gene expression changes in empty-vector APP/PS1 mice, providing validation of the assays used for the analysis. By contrast, there were specific sAPPα-associated gene expression profiles which included increases in key neuroprotective genes such as Decorin, betaine-GABA transporter, and protocadherin beta-5, subsequently validated by qRT-PCR. An integrated biological pathways analysis highlighted regulation of GABA receptor signaling, cell survival, and inflammatory responses. Furthermore, upstream gene regulatory analysis implicated sAPPα activation of Interleukin-4, which can counteract inflammatory changes in AD. Conclusion: This study identified key molecular processes that likely underpin the long-term neuroprotective and therapeutic effects of increasing sAPPα levels in vivo


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Angela M. Crist ◽  
Kelly M. Hinkle ◽  
Xue Wang ◽  
Christina M. Moloney ◽  
Billie J. Matchett ◽  
...  

AbstractSelective vulnerability of different brain regions is seen in many neurodegenerative disorders. The hippocampus and cortex are selectively vulnerable in Alzheimer’s disease (AD), however the degree of involvement of the different brain regions differs among patients. We classified corticolimbic patterns of neurofibrillary tangles in postmortem tissue to capture extreme and representative phenotypes. We combined bulk RNA sequencing with digital pathology to examine hippocampal vulnerability in AD. We identified hippocampal gene expression changes associated with hippocampal vulnerability and used machine learning to identify genes that were associated with AD neuropathology, including SERPINA5, RYBP, SLC38A2, FEM1B, and PYDC1. Further histologic and biochemical analyses suggested SERPINA5 expression is associated with tau expression in the brain. Our study highlights the importance of embracing heterogeneity of the human brain in disease to identify disease-relevant gene expression.


Sign in / Sign up

Export Citation Format

Share Document