A Milk-Based Wolfberry Preparation Prevents Prenatal Stress-Induced Cognitive Impairment of Offspring Rats, and Inhibits Oxidative Damage and Mitochondrial Dysfunction In Vitro

2010 ◽  
Vol 35 (5) ◽  
pp. 702-711 ◽  
Author(s):  
Zhihui Feng ◽  
Haiqun Jia ◽  
Xuesen Li ◽  
Zhuanli Bai ◽  
Zhongbo Liu ◽  
...  
2010 ◽  
Vol 6 ◽  
pp. S503-S504 ◽  
Author(s):  
Inês Baldeiras ◽  
Isabel Santana ◽  
Maria Teresa Proença ◽  
Maria Helena Garrucho ◽  
Rui Pascoal ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Anil Kumar ◽  
Atish Prakash ◽  
Samrita Dogra

D-galactose induced neurotoxicity is well known model for studying aging and related oxidative damage and memory impairment. Aging is a biological process, characterized by the gradual loss of physiological functions by unknown mechanism.Centella asiatica, Indian pennywort has been documented in the treatment of various neurological disorders including aging. Therefore, present study has been conducted in order to explore the possible role of Centella asiatica against D-galactose induced cognitive impairment, oxidative and mitochondrial dysfunction in mice. Chronic administration of D-galactose (100 mg/kg s.c.) for a period of six weeks significantly impaired cognitive task (both in both Morris water maze and elevated plus maze) and oxidative defense (Increased lipid peroxidation, nitrite concentration and decreased activity of superoxide dismutase, catalase and non-protein thiols) and impaired mitochondrial complex (I, II and III) enzymes activities as compared to sham group. Six weeksCentella asiatica(150 and 300 mg/kg, p.o) treatment significantly improved behavioral alterations, oxidative damage and mitochondrial enzyme complex activities as compared to contro l (D-galactose).Centella asiaticaalso attenuated enhanced acetylcholine esterase enzyme level in D-galactose senescence mice. Present study highlights the protective effect ofCentella asiaticaagainst D-galactose induced behavioral, biochemical and mitochondrial dysfunction in mice.


2021 ◽  
Vol 22 (11) ◽  
pp. 5675
Author(s):  
Jinglong Chen ◽  
Danping Wang ◽  
Yibo Zong ◽  
Xiaojing Yang

Oxidative stress occurs in a variety of clinical liver diseases and causes cellular damage and mitochondrial dysfunction. The clearance of damaged mitochondria by mitophagy may facilitate mitochondrial biogenesis and enhance cell survival. Although the supplementation of docosahexaenoic acid (DHA) has been recognized to relieve the symptoms of various liver diseases, the antioxidant effect of DHA in liver disease is still unclear. The purpose of our research was to investigate the antioxidant effect of DHA in the liver and the possible role of mitophagy in this. In vitro, H2O2-induced injury was caused in AML12 cells. The results showed that DHA repressed the level of reactive oxygen species (ROS) induced by H2O2 and stimulated the cellular antioxidation response. Most notably, DHA restored oxidative stress-impaired autophagic flux and promoted protective autophagy. In addition, PINK/Parkin-mediated mitophagy was activated by DHA in AML12 cells and alleviated mitochondrial dysfunction. The ERK1/2 signaling pathway was inhibited during oxidative stress but reactivated by DHA treatment. It was proven that the expression of ERK1/2 was involved in the regulation of mitophagy by the ERK1/2 inhibitor. We further proved these results in vivo. DHA effectively alleviated the liver oxidative damage caused by CCl4 and enhanced antioxidation capacity; intriguingly, autophagy was also activated. In summary, our data demonstrated that DHA protected hepatocytes from oxidative damage through GPR120/ERK-mediated mitophagy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dan Cheng ◽  
Xin-Jing Yang ◽  
Lu Zhang ◽  
Zong-Shi Qin ◽  
Wen-Qi Li ◽  
...  

Mitochondrial dysfunction with oxidative damage plays the fundamental roles in the pathogenesis of Alzheimer’s disease. In traditional Chinese medicine (TCM) practice, animal tissue-derived gelatins are often used as nootropic agents to treat cognitive deterioration and senile dementia. Tortoise plastron gelatin (TPG) and deer antler gelatin (DAG) are the two most commonly used gelatins for this purpose. This study sought to examine the effects of the two gelatins in preventing neuronal mitochondria from oxidative damage. PC12 cells, a cell line derived from rat pheochromocytoma, exposed to the neurotoxin Aβ25–35 served as an in vitro model of Alzheimer’s disease. The cells were separately pre-treated with TPG and DAG at various concentrations ranging from 6.26 µg/ml–200 µg/ml, followed by co-incubation with 20 μM Aβ25–35 for different duration. Cell viability, mitochondrial membrane potential (MMP) and ultrastructure, intracellular ATP, reactive oxygen species (ROS) and calcium (Ca2+) level, the expression of mitochondrial dynamic proteins and biomarkers of apoptosis were measured. Pretreatment with TPG and DAG reversed the Aβ-induced reduction of cell viability in a dose-dependent manner. Both TPG and DAG significantly increased MMP and ATP, alleviated the accumulation of damaged mitochondrial fragments, and normalized the aberrant expression of multiple mitochondrial dynamic proteins of the Aβ-exposed cells. Both gelatins also suppressed intracellular ROS overproduction and Ca2+ overload, overexpression of cytochrome c and pro-apoptosis biomarkers induced by the Aβ exposure. These results suggest that TPG and DAG may have the anti-dementia potential by preventing neuronal mitochondria from oxidative damage.


2009 ◽  
Vol 35 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Jalsrai Aldarmaa ◽  
Zhongbo Liu ◽  
Jiangang Long ◽  
Xiaoyan Mo ◽  
Jiangang Ma ◽  
...  

2010 ◽  
Vol 37 (2) ◽  
pp. 154-160 ◽  
Author(s):  
Ling-Ling LIU ◽  
Bai-Yang SHENG ◽  
Kai GONG ◽  
Nan-Ming ZHAO ◽  
Xiu-Fang ZHANG ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fujiao Nie ◽  
Jiazhao Yan ◽  
Yanjun Ling ◽  
Zhengrong Liu ◽  
Chaojun Fu ◽  
...  

Abstract Background Diabetic retinopathy (DR) has become a worldwide concern because of the rising prevalence rate of diabetes mellitus (DM). Despite much energy has been committed to DR research, it remains a difficulty for diabetic patients all over the world. Since apoptosis of retinal microvascular pericytes (RMPs) is the early characteristic of DR, this study aimed to reveal the mechanism of Shuangdan Mingmu (SDMM) capsule, a Chinese patent medicine, on oxidative stress-induced apoptosis of pericytes implicated with poly (ADP-ribose) polymerase (PARP) / glyceraldehyde 3-phosphate dehydrogenase (GAPDH) pathway. Methods Network pharmacology approach was performed to predict biofunction of components of SDMM capsule dissolved in plasma on DR. Both PARP1 and GAPDH were found involved in the hub network of protein-protein interaction (PPI) of potential targets and were found to take part in many bioprocesses, including responding to the regulation of reactive oxygen species (ROS) metabolic process, apoptotic signaling pathway, and response to oxygen levels through enrichment analysis. Therefore, in vitro research was carried out to validate the prediction. Human RMPs cultured with media containing 0.5 mM hydrogen oxide (H2O2) for 4 h was performed as an oxidative-damage model. Different concentrations of SDMM capsule, PARP1 inhibitor, PARP1 activation, and GAPDH inhibitor were used to intervene the oxidative-damage model with N-Acetyl-L-cysteine (NAC) as a contrast. Flow cytometry was performed to determine the apoptosis rate of cells and the expression of ROS. Cell counting kit 8 (CCK8) was used to determine the activity of pericytes. Moreover, nitric oxide (NO) concentration of cells supernatant and expression of endothelial nitric oxide synthase (eNOS), superoxide dismutase (SOD), B cell lymphoma 2 (BCL2), vascular endothelial growth factor (VEGF), endothelin 1 (ET1), PARP1, and GAPDH were tested through RT-qPCR, western blot (WB), or immunocytochemistry (ICC). Results Overproduction of ROS, high apoptotic rate, and attenuated activity of pericytes were observed after cells were incubated with media containing 0.5 mM H2O2. Moreover, downregulation of SOD, NO, BCL2, and GAPDH, and upregulation of VEGFA, ET1, and PARP1 were discovered after cells were exposed to 0.5 mM H2O2 in this study, which could be improved by PARP1 inhibitor and SDMM capsule in a dose-dependent way, whereas worsened by PARP1 activation and GAPDH inhibitor. Conclusions SDMM capsule may attenuate oxidative stress-induced apoptosis of pericytes through downregulating PARP expression and upregulating GAPDH expression.


Sign in / Sign up

Export Citation Format

Share Document