scholarly journals DHA Protects Hepatocytes from Oxidative Injury through GPR120/ERK-Mediated Mitophagy

2021 ◽  
Vol 22 (11) ◽  
pp. 5675
Author(s):  
Jinglong Chen ◽  
Danping Wang ◽  
Yibo Zong ◽  
Xiaojing Yang

Oxidative stress occurs in a variety of clinical liver diseases and causes cellular damage and mitochondrial dysfunction. The clearance of damaged mitochondria by mitophagy may facilitate mitochondrial biogenesis and enhance cell survival. Although the supplementation of docosahexaenoic acid (DHA) has been recognized to relieve the symptoms of various liver diseases, the antioxidant effect of DHA in liver disease is still unclear. The purpose of our research was to investigate the antioxidant effect of DHA in the liver and the possible role of mitophagy in this. In vitro, H2O2-induced injury was caused in AML12 cells. The results showed that DHA repressed the level of reactive oxygen species (ROS) induced by H2O2 and stimulated the cellular antioxidation response. Most notably, DHA restored oxidative stress-impaired autophagic flux and promoted protective autophagy. In addition, PINK/Parkin-mediated mitophagy was activated by DHA in AML12 cells and alleviated mitochondrial dysfunction. The ERK1/2 signaling pathway was inhibited during oxidative stress but reactivated by DHA treatment. It was proven that the expression of ERK1/2 was involved in the regulation of mitophagy by the ERK1/2 inhibitor. We further proved these results in vivo. DHA effectively alleviated the liver oxidative damage caused by CCl4 and enhanced antioxidation capacity; intriguingly, autophagy was also activated. In summary, our data demonstrated that DHA protected hepatocytes from oxidative damage through GPR120/ERK-mediated mitophagy.

2021 ◽  
Author(s):  
zhen lin ◽  
libin ni ◽  
cheng teng ◽  
zhao zhang ◽  
xinlei lu ◽  
...  

Intervertebral disc degeneration (IDD) increases the risk of low back pain (LBP). Oxidative stress may induce cellular damage and contribute to various diseases including IDD. Endoplasmic reticulum autophagy (ER-phagy) is a specific type of autophagy, its role in oxidative stress induced damage as well as in IDD is unknown. This study explores the role of ER-phagy in oxidative damage in intervertebral disc nucleus pulposus cells (NPCs), as well as the Nrf2/FAM134B axis in ER-phagy regulation and IDD therapy. We found ER-phagy was decreased in NPCs during oxidative stress; while FAM134B may promote ER-phagy and alleviate oxidative stress induced ER-stress and apoptosis. In addition, the nuclear transcription factor Nrf2 may promote the expression of FAM134B as well as ER-phagy, and suppress ER-stress and apoptosis in NPCs. Furthermore, overexpression of FAM134B and Nrf2 could effectively attenuate the progression of IDD in rats in vivo. These results suggest Nrf2/FAM134B mediated ER-phagy may combat oxidative damage in cells; meanwhile, ER-phagy as well as Nrf2 could be potential therapeutic targets for IDD.


2019 ◽  
Vol 2019 ◽  
pp. 1-27 ◽  
Author(s):  
Liang Kang ◽  
Qian Xiang ◽  
Shengfeng Zhan ◽  
Yu Song ◽  
Kun Wang ◽  
...  

Oxidative stress-induced mitochondrial dysfunction and nucleus pulposus (NP) cell apoptosis play crucial roles in the development of intervertebral disc degeneration (IDD). Increasing studies have shown that interventions targeting impaired autophagic flux can maintain cellular homeostasis by relieving oxidative damage. Here, we investigated the effect of curcumin (CUR), a known autophagy activator, on IDD in vitro and in vivo. CUR suppressed tert-butyl hydroperoxide- (TBHP-) induced oxidative stress and mitochondrial dysfunction and thereby inhibited human NP cell apoptosis, senescence, and ECM degradation. CUR treatment induced autophagy and enhanced autophagic flux in an AMPK/mTOR/ULK1-dependent manner. Notably, CUR alleviated TBHP-induced interruption of autophagosome-lysosome fusion and impairment of lysosomal function and thus contributed to the restoration of blocked autophagic clearance. These protective effects of CUR in TBHP-stimulated human NP cells resembled the effects produced by the autophagy inducer rapamycin, but the effects were partially eliminated by 3-methyladenine- and compound C-mediated inhibition of autophagy initiation or chloroquine-mediated obstruction of autophagic flux. Lastly, CUR also exerted a protective effect against puncture-induced IDD progression in vivo. Our results showed that suppression of excessive ROS production and mitochondrial dysfunction through enhancement of autophagy coupled with restoration of autophagic flux ameliorated TBHP-induced human NP cell apoptosis, senescence, and ECM degradation. Thus, maintenance of the proper functioning of autophagy represents a promising therapeutic strategy for IDD, and CUR might serve as an effective therapeutic agent for IDD.


2015 ◽  
Vol 35 (7) ◽  
pp. 724-736 ◽  
Author(s):  
Gang Jee Ko ◽  
So Yeon Bae ◽  
Yu-Ah Hong ◽  
Heui Jung Pyo ◽  
Young Joo Kwon

Radiocontrast-induced nephropathy (RCN) is the third most common cause of acute renal failure among inpatients. Although the number of patients undergoing exams using radiocontrast is increasing, little progress has been made for RCN treatment. The pathophysiology of RCN is known as tubular injury due to oxidative stress. As autophagy regulates cellular damage under stressful conditions, we investigated the role of autophagy in RCN. RCN was induced in male C57BL/6 J mice by intraperitoneal injection of iohexol, and 3-methyladenine (3-MA) was used as an autophagy inhibitor. Tubular injury caused by iohexol was also examined in vitro using rat tubular cells (NRK-52E). Increased autophagy after iohexol administration was demonstrated by the increase of light chain 3-II in the damaged kidney tubules both in vivo and in vitro. Serum creatinine and tubular injury were significantly increased at 24 h after iohexol treatment, as compared to control group. Further they worsened with autophagy inhibition by 3-MA. In vitro studies also demonstrated that decreased cell viability by iohexol was aggravated with 3-MA pretreatment. Malondialdehyde measured for oxidative stress was increased by iohexol, and it was accentuated by autophagy inhibition, which resulted in increase of cytochrome c. Apoptosis, increased by iohexol treatment, was augmented with autophagy inhibition. Macrophage infiltration and increase of monocyte chemotactic protein-1 in kidneys were induced by iohexol, and it was aggravated with autophagy inhibition. This study showed that autophagy was involved with the pathophysiology of RCN, and the role of autophagy in modulation of apoptosis, oxidative stress, and inflammatory cell infiltration was supposed as mechanisms mitigating RCN.


2020 ◽  
Vol 11 (1) ◽  
pp. 89-95
Author(s):  
Boyan Li ◽  
Keyana Nozzari Varkani ◽  
Lu Sun ◽  
Bo Zhou ◽  
Xiaohong Wang ◽  
...  

AbstractIn fluorosis-endemic areas, exposure to high levels of fluoride causes neurotoxicity such as lowered intelligence and cognitive impairment. Oxidative damage is critical to pathophysiologic processes of fluoride intoxication, and neurotoxicity of fluoride may be associated with oxidative stress. In previous studies, maize purple plant pigment (MPPP), which was rich in anthocyanins, showed a strong scavenging activity in vitro and in vivo. The present study aimed to determine whether treatment with MPPP can alleviate fluoride-induced oxidative damage in rat brain. After 3 months of experiment, brain tissues were assayed for oxidative stress variables, histological and Western blotting examinations. Our results showed that MPPP reduced the elevated malondialdehyde levels, increased superoxide dismutase activity, and further attenuated histopathological alterations and mitigated neuronal apoptosis. Importantly, MPPP also reversed changes in Bax and Bcl-2. Therefore, it was speculated that MPPP protects brain tissue from fluoride toxicity through its antioxidant capacity.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Xinxin Yang ◽  
Haibo Yang ◽  
Fengdi Wu ◽  
Zhipeng Qi ◽  
Jiashuo Li ◽  
...  

Excessive manganese (Mn) can accumulate in the striatum of the brain following overexposure. Oxidative stress is a well-recognized mechanism in Mn-induced neurotoxicity. It has been proven that glutathione (GSH) depletion is a key factor in oxidative damage during Mn exposure. However, no study has focused on the dysfunction of GSH synthesis-induced oxidative stress in the brain during Mn exposure. The objective of the present study was to explore the mechanism of Mn disruption of GSH synthesis via EAAC1 and xCT in vitro and in vivo. Primary neurons and astrocytes were cultured and treated with different doses of Mn to observe the state of cells and levels of GSH and reactive oxygen species (ROS) and measure mRNA and protein expression of EAAC1 and xCT. Mice were randomly divided into seven groups, which received saline, 12.5, 25, and 50 mg/kg MnCl2, 500 mg/kg AAH (EAAC1 inhibitor) + 50 mg/kg MnCl2, 75 mg/kg SSZ (xCT inhibitor) + 50 mg/kg MnCl2, and 100 mg/kg NAC (GSH rescuer) + 50 mg/kg MnCl2 once daily for two weeks. Then, levels of EAAC1, xCT, ROS, GSH, malondialdehyde (MDA), protein sulfhydryl, carbonyl, 8-hydroxy-2-deoxyguanosine (8-OHdG), and morphological and ultrastructural features in the striatum of mice were measured. Mn reduced protein levels, mRNA expression, and immunofluorescence intensity of EAAC1 and xCT. Mn also decreased the level of GSH, sulfhydryl, and increased ROS, MDA, 8-OHdG, and carbonyl in a dose-dependent manner. Injury-related pathological and ultrastructure changes in the striatum of mice were significantly present. In conclusion, excessive exposure to Mn disrupts GSH synthesis through inhibition of EAAC1 and xCT to trigger oxidative damage in the striatum.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Ken Shinmura

The biology of aging has not been fully clarified, but the free radical theory of aging is one of the strongest aging theories proposed to date. The free radical theory has been expanded to the oxidative stress theory, in which mitochondria play a central role in the development of the aging process because of their critical roles in bioenergetics, oxidant production, and regulation of cell death. A decline in cardiac mitochondrial function associated with the accumulation of oxidative damage might be responsible, at least in part, for the decline in cardiac performance with age. In contrast, lifelong caloric restriction can attenuate functional decline with age, delay the onset of morbidity, and extend lifespan in various species. The effect of caloric restriction appears to be related to a reduction in cellular damage induced by reactive oxygen species. There is increasing evidence that sirtuins play an essential role in the reduction of mitochondrial oxidative stress during caloric restriction. We speculate that cardiac sirtuins attenuate the accumulation of oxidative damage associated with age by modifying specific mitochondrial proteins posttranscriptionally. Therefore, the distinct role of each sirtuin in the heart subjected to caloric restriction should be clarified to translate sirtuin biology into clinical practice.


2022 ◽  
Author(s):  
Zhao Huang ◽  
Li Zhou ◽  
Jiufei Duan ◽  
Siyuan Qin ◽  
Yu Wang ◽  
...  

Abstract Loss of E-cadherin (ECAD), often caused by epigenetic inactivation, is closely associated with tumor metastasis. However, how ECAD is regulated in response to oxidative stress during tumorigenesis is largely unknown. Here we identify RNF25 as a new E3 ligase of ECAD, whose activation by oxidative stress leads to ECAD protein degradation in hepatocellular carcinoma (HCC). Loss of ECAD activates YAP, which in turn promotes the transcription of RNF25, thus forming a positive feedback loop to sustain the ECAD downregulation. YAP activation mitigates oxidative stress in detached HCC cells by upregulating antioxidant genes, protecting detached HCC cells from ferroptosis, resulting in anoikis resistance. Mechanistically, we found that protein kinase A (PKA) senses oxidative stress by redox modification in its β catalytic subunit (PRKACB) at Cys200 and Cys344, which increases its kinase activity towards RNF25 phosphorylation at Ser450, facilitating RNF25-mediated degradation of ECAD. Moreover, RNF25 expression is associated with HCC metastasis and depletion of RNF25 is sufficient to diminish HCC invasion and metastasis in vitro and in vivo. Together, these results identify a dual role of RNF25 as a critical regulator of ECAD protein turnover, promoting both anoikis resistance and metastasis, and PKA is a necessary redox sensor to enable this process. Our study provides mechanistic insight into how tumor cells sense oxidative stress signals to spread while escaping cell death.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Yoshiyuki Ikeda ◽  
Junichi Sadoshima

Fission and fusion affect mitochondrial turnover in part by modulating mitophagy. This study aimed to clarify the role of mitochondrial fission in regulating cardiac function and autophagy in the heart. Dynamin-related protein 1 (Drp-1) plays an essential role in mediating mitochondrial fission. Therefore, we generated cardiac specific Drp-1 KO mice and utilized cultured cardiomyocytes transduced with adenovirus harboring short hairpin Drp-1 (Ad-shDrp-1) to test the effect of Drp-1 disruption both in vivo and in vitro. In Drp-1 KO hearts we observed a significantly greater mitochondrial mass ratio compared to control, as assessed by electron microscopy (Drp-1 KO: 3.57 ± 1.38, control: 1.18 ± 0.31, P<0.05). Mitochondrial ATP content was significantly lower (0.70 ± 0.07 vs 1.03 ± 0.10, P<0.05), while mitochondrial swelling was significantly greater (% decrease in absorbance; 8.01 ± 1.99 vs 2.01 ± 0.58, P<0.05) in Drp-1 KO hearts versus control. Mitochondrial membrane potential, assessed by JC-1 staining, was significantly reduced in myocytes with knockdown of Drp-1. Taken together, these results suggest that inhibition of fission causes mitochondrial dysfunction. We also examined the effect of Drp-1 depletion on autophagy. We found that the amount of LC-3 II was significantly less (0.47 ± 0.16 vs 1.32 ±0.34, P<0.05), whereas p62 expression was significantly greater (1.14 ± 0.16 vs 0.16 ± 0.06, P<0.01) in Drp-1 KO hearts compared to control. The number of LC3 dots in Ad-shDrp-1 transduced myocytes was lower than that of sh-scramble treatment. We investigated apoptosis and found that the amount of cleaved caspase-3 (0.62 ± 0.24 vs 0.18 ± 0.04, P<0.05) and the number of TUNEL positive cells (0.22 ± 0.12 vs 0.03 ± 0.06%, P<0.01) were higher in Drp-1 KO versus control hearts. Cardiac systolic function was reduced (ejection fraction; 44.5 ± 6.3 vs 85.4 ± 5.7%, P<0.01) and LVW/tibia length was greater (4.48 ± 0.38 vs 3.84 ± 0.58, P<0.05) in Drp-1 KO mice compared to control. Finally, we observed that the survival rate of Drp-1 KO mice was significantly reduced compared to control mice. Our results demonstrate that inhibition of mitochondrial fission via disruption of Drp-1 inhibits autophagy and causes mitochondrial dysfunction, thereby promoting cardiomyopathy.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Jing-Shang Wang ◽  
Ye Huang ◽  
Shuping Zhang ◽  
Hui-Jun Yin ◽  
Lei Zhang ◽  
...  

Hyperglycemia fluctuation is associated with diabetes mellitus (DM) complications when compared to persistent hyperglycemia. Previous studies have shown that paeoniflorin (PF), through its antiapoptosis, anti-inflammation, and antithrombotic properties, effectively protects against cardiovascular and cerebrovascular disease. However, the mechanism underlying the protection from PF against vascular injuries induced by hyperglycemia fluctuations remains poorly understood. Herein, we investigated the potential protective role of PF on human umbilical vein endothelial cells (HUVECs) subjected to intermittent glucose levels in vitro and in DM rats with fluctuating hyperglycemia in vivo. A remarkable increased apoptosis associated with elevated inflammation, increased oxidative stress, and high protein level of PKCβ1 was induced in HUVECs by intermittently changing glucose for 8 days, and PF recovered those detrimental changes. LY333531, a potent PKCβ1 inhibitor, and metformin manifested similar effects. Additionally, in DM rats with fluctuating hyperglycemia, PF protected against vascular damage as what has been observed in vitro. Taken together, PF attenuates the vascular injury induced by fluctuant hyperglycemia through oxidative stress inhibition, inflammatory reaction reduction, and PKCβ1 protein level repression, suggesting its perspective clinical usage.


2000 ◽  
pp. 79-83 ◽  
Author(s):  
W Abplanalp ◽  
MD Scheiber ◽  
K Moon ◽  
B Kessel ◽  
JH Liu ◽  
...  

Estrogens possess strong antioxidant effects in vitro, but in vivo studies in humans have yielded conflicting results. Little is known regarding factors that mediate the antioxidant effect of estrogens in vivo. In this study the potential role of high density lipoprotein (HDL) was examined. The antioxidant effect of estradiol-17beta (E2) added to low density lipoprotein (LDL) was lost after dialysis. In contrast, the antioxidant effect of E2 added to HDL was conserved after dialysis, suggesting that E2 was bound to HDL. Binding of E2 to LDL increased after esterification (especially to long chain fatty acids). In the presence of HDL, an increased amount of E2 was transferred to LDL. E2-17 ester was as potent as E2 in preventing LDL oxidation in vitro, but 3,17-diesters were not as effective (E2=E2-17 ester>E2-3 ester>E2-3,17 diester). This was also supported by experiments which showed that estrogens with masked 3-OH groups were not effective as antioxidants. These studies provide evidence that HDL could facilitate the antioxidant effect of E2 through initial association, esterification and eventual transfer of E2 esters to LDL. Therefore it is critical that HDL peroxidation parameters be evaluated in subjects receiving estrogen replacement therapy.


Sign in / Sign up

Export Citation Format

Share Document