scholarly journals Parametric instability of a magnetic pendulum in the presence of a vibrating conducting plate

2020 ◽  
Vol 102 (4) ◽  
pp. 2039-2056
Author(s):  
Thomas Boeck ◽  
Seyed Loghman Sanjari ◽  
Tatiana Becker

AbstractA pendulum with an attached permanent magnet swinging in the vicinity of a conductor is a typical experiment for the demonstration of electromagnetic braking and Lenz’ law of induction. When the conductor itself moves, it can transfer energy to the pendulum. An exact analytical model of such an electromagnetic interaction is possible for a flat conducting plate. The eddy currents induced in the plate by a moving magnetic dipole and the resulting force and torque are known analytically in the quasistatic limit, i.e., when the magnetic diffusivity is sufficiently high to ensure an equilibrium of magnetic field advection and diffusion. This allows us to study a simple pendulum with a magnetic dipole moment in the presence of a horizontal plate oscillating in vertical direction. Equilibrium of the pendulum in the vertical position can be realized in three cases considered, i.e., when the magnetic moment is parallel to the rotation axis, or otherwise, its projection onto the plane of motion is either horizontal or vertical. The stability problem is described by a differential equation of Mathieu type with a damping term. Instability is only possible when the vibration amplitude and the distance between plate and magnet satisfy certain constraints related to the simultaneous excitation and damping effects of the plate. The nonlinear motion is studied numerically for the case when the magnetic moment and rotation axis are parallel. Chaotic behavior is found when the eigenfrequency is sufficiently small compared to the excitation frequency. The plate oscillation typically has a stabilizing effect on the inverted pendulum.

2013 ◽  
Vol 43 (4) ◽  
pp. 271-303 ◽  
Author(s):  
Tomáš Šoltis ◽  
Jozef Brestenský

Abstract A linear stability analysis of convection arising in a horizontal plane layer rotating about the horizontal axis and permeated by a homogeneous horizontal magnetic field perpendicular to the rotation axis is performed. Resulting horizontal convective rolls are inclined to the magnetic field at an angle dependent on the dimensionless numbers − the Elsasser, Ekman and Roberts numbers, and moreover on the anisotropy parameter, the ratio of horizontal and vertical diffusion coefficients (which are the viscosity and thermal diffusivity; magnetic diffusivity is considered isotropic). Two types of anisotropies, SA andBM, are considered and compared with the isotropic case of diffusion coefficients. In the stratification anisotropy, SA, of the Sa and So types, diffusivities in the horizontal directions are, respectively, smaller and greater than the vertical ones. In the BM anisotropy (Braginsky and Meytlis, 1990), the diffusivities in the directions of rotation axis and magnetic field - in the horizontal directions are greater than in vertical direction, thus identically as in So type anisotropy. Results of this H case, the model with the horizontal rotation axis, are compared with the V case of a similar model with the vertical rotation axis. The modes of instabilities are much more sensitive to viscosity and various anisotropies in the H case than in the V case. Results indicate that the effects of anisotropic diffusivities on the Earth’s core magnetoconvection and geodynamo processes should be studied more thoroughly in simpler models than is usually done.


2020 ◽  
Author(s):  
Enrico Filippi ◽  
Jozef Brestenský

<p>Earth’s core Physics inspires the magnetoconvection models. Turbulent state of the core can increase the viscosity, the thermal diffusivity and also the magnetic diffusivity. The change of magnetic diffusivity is also called β-effect and it is important in dynamo mechanisms. Moreover, the turbulence suggests that the dynamics can be more complicated than it is usually presented. For instance, due to turbulence the diffusivity coefficients could be anisotropic as it was described in some recent studies, which stress how anisotropy in many cases facilitate convection and in other cases inhibits it. For example, if there is anisotropy some types of convection can occur also with very small values of Ekman numbers, which are usual for the Earth’s core. This is important because the convection can be the main cause of dynamo action. We present several rotating magnetoconvection models in horizontal plane layer with gravity and rotation axis in vertical direction and homogeneous magnetic field in horizontal direction. Different models correspond to different cases of anisotropic diffusivities. In other words, we consider several anisotropic models: one with anisotropy in all diffusivities and other models with various combinations of anisotropic and isotropic diffusivities. Comparisons with other former models (e.g. with isotropic case, <em>p</em>-case, partial anisotropy case when only magnetic diffusivity is isotropic, and <em>f</em>-case, full anisotropy case with all diffusivities anisotropic) are thoroughly performed. In all models we consider two distinct kinds of anisotropy, Stratification Anisotropy – SA, determined by direction of single gravity (buoyancy) force and Braginsky-Meytlis one – BM, determined by directions of magnetic field and rotation axis. All systems described by these models are prone to instabilities, so analysis in term of normal modes and search for preferred modes are very useful to study such systems. We focus our attention on stationary modes and SA anisotropies. Furthermore, we distinguish two sub-cases of SA anisotropy: atmospheric – Sa, if the diffusion in the vertical direction is greater than in the horizontal ones and oceanic – So, if opposite holds. In Sa (So) anisotropy the convection is in major cases facilitated (inhibited). This fact suggests that it is important to study Sa as well as So anisotropies in the Earth’s core. Our main results concern cases of anisotropic diffusivities, when preferred modes give new dynamics (unexpected in isotropic case) in the system in which geodynamo can work. </p>


2016 ◽  
Vol 716 ◽  
pp. 395-401 ◽  
Author(s):  
Jan Brüninghaus ◽  
Yan Volfson ◽  
Jobst Bickendorf ◽  
Sigrid Brell-Cokcan

The formability and geometrical accuracy in incremental sheet forming can be increased using a force-controlled support tool. The main problems in using such a kinematic support tool is the positioning of forming and support tools, while maintaining force magnitude and alignment. A new tool for this was developed systematically using a morphological box. It uses a spring controlled rotation of the tool tip to maintain the force. Since the rotation axis is not in line with the tool tip axis and the tool tip can freely rotate around its axis, roll friction conditions can be achieved. The center of gravity of the rotating part of the tool is placed in the rotating axis and the force is therefore independent from the alignment of the tool in space. It has a mechanical stop with locking option in the vertical position and is therefore also fully usable as a forming tool. While the prototype is manually controlled, concepts for a fully automated version have been designed, as well. First tests are in line with results described in literature, showing that direction and magnitude of force have an influence on the formability.


2020 ◽  
Vol 633 ◽  
pp. A87 ◽  
Author(s):  
L. Griton ◽  
F. Pantellini

Context. As proven by measurements at Uranus and Neptune, the magnetic dipole axis and planetary spin axis can be off by a large angle exceeding 45°. The magnetosphere of such an (exo-)planet is highly variable over a one-day period and it does potentially exhibit a complex magnetic tail structure. The dynamics and shape of rotating magnetospheres do obviously depend on the planet’s characteristics but also, and very substantially, on the orientation of the planetary spin axis with respect to the impinging, generally highly supersonic, stellar wind. Aims. On its orbit around the Sun, the orientation of Uranus’ spin axis with respect to the solar wind changes from quasi-perpendicular (solstice) to quasi-parallel (equinox). In this paper, we simulate the magnetosphere of a fictitious Uranus-like planet plunged in a supersonic plasma (the stellar wind) at equinox. A simulation with zero wind velocity is also presented in order to help disentangle the effects of the rotation from the effects of the supersonic wind in the structuring of the planetary magnetic tail. Methods. The ideal magnetohydrodynamic (MHD) equations in conservative form are integrated on a structured spherical grid using the Message-Passing Interface-Adaptive Mesh Refinement Versatile Advection Code (MPI-AMRVAC). In order to limit diffusivity at grid level, we used background and residual decomposition of the magnetic field. The magnetic field is thus made of the sum of a prescribed time-dependent background field B0(t) and a residual field B1(t) computed by the code. In our simulations, B0(t) is essentially made of a rigidly rotating potential dipole field. Results. The first simulation shows that, while plunged in a non-magnetised plasma, a magnetic dipole rotating about an axis oriented at 90° with respect to itself does naturally accelerate the plasma away from the dipole around the rotation axis. The acceleration occurs over a spatial scale of the order of the Alfvénic co-rotation scale r*. During the acceleration, the dipole lines become stretched and twisted. The observed asymptotic fluid velocities are of the order of the phase speed of the fast MHD mode. In two simulations where the surrounding non-magnetised plasma was chosen to move at supersonic speed perpendicularly to the rotation axis (a situation that is reminiscent of Uranus in the solar wind at equinox), the lines of each hemisphere are symmetrically twisted and stretched as before. However, they are also bent by the supersonic flow, thus forming a magnetic tail of interlaced field lines of opposite polarity. Similarly to the case with no wind, the interlaced field lines and the attached plasma are accelerated by the rotation and also by the transfer of kinetic energy flux from the surrounding supersonic flow. The tailwards fluid velocity increases asymptotically towards the externally imposed flow velocity, or wind. In one more simulation, a transverse magnetic field, to both the spin axis and flow direction, was added to the impinging flow so that magnetic reconnection could occur between the dipole anchored field lines and the impinging field lines. No major difference with respect to the no-magnetised flow case is observed, except that the tailwards acceleration occurs in two steps and is slightly more efficient. In order to emphasise the effect of rotation, we only address the case of a fast-rotating planet where the co-rotation scale r* is of the order of the planetary counter-flow magnetopause stand-off distance rm. For Uranus, r*≫ rm and the effects of rotation are only visible at large tailwards distances r ≫ rm.


1940 ◽  
Vol 36 (3) ◽  
pp. 351-362 ◽  
Author(s):  
S. T. Ma

The interaction between an external electromagnetic field and a nuclear system can be expressed in terms of the multipole moments. The electric quadripole and the magnetic dipole moments of the deuteron have been calculated, taking into account the exchange forces as given by the meson theory. The cross-section of the photomagnetic effect of the deuteron has been calculated.This work was carried out under the guidance of Dr Heitler and Dr Fröhlich. The writer wishes to express his sincerest thanks to them for suggesting the problem and many valuable comments. The writer is also indebted to Dr Kahn for discussions during the early stages of this work.


2020 ◽  
Author(s):  
Patrick Kolhey ◽  
Daniel Heyner ◽  
Johannes Wicht ◽  
Karl-Heinz Glassmeier

<p>In the 1970’s the flybys of NASA’s Mariner 10 spacecraft confirmed the existence of an internally generated magnetic field at Mercury. The measurements taken during its flybys already revealed, that Mercury‘s magnetic field is unique along other planetary magnetic fields, since the magnetic dipole moment of ~190 nT ∙ R<sub>M</sub><sup>3 </sup>is very weak, e.g. compared to Earth’s magnetic dipole moment. The following MESSENGER mission from NASA investigated Mercury and its magnetic field more precisely and exposed additional interesting properties about the planet’s magnetic field. The tilt of its dipole component is less than 1°, which indicates a strong alignment of the field along the planet’s rotation axis. Additionally the measurement showed that the magnetic field equator is shifted roughly 0.2 ∙ R<sub>M</sub> towards north compared to Mercury‘s actual geographic equator.</p><p>Since its discovery Mercury‘s magnetic field has puzzled the community and modelling the dynamo process inside the planet’s interior is still a challenging task. Adapting the typical control parameters and the geometry in the models of the geodynamo for Mercury does not lead to the observed field morphology and strength. Therefore new non-Earth-like models were developed over the past decades trying to match Mercury’s peculiar magnetic field. One promising model suggests a stably stratified layer on the upper part of Mercury’s core. Such a layer divides the fluid core in a convecting part and a non-convecting part, where the magnetic field generation is mainly inhibited. As a consequence the magnetic field inside the outer core is damped very efficiently passing through the stably stratified layer by a so-called skin effect. Additionally, the non-axisymmetric parts of the magnetic field are vanishing, too, such that a dipole dominated magnetic is left at the planet’s surface.</p><p>In this study we present new direct numerical simulations of the magnetohydrodynamical dynamo problem which include a stably stratified layer on top of the outer core. We explore a wide parameter range, varying mainly the Rayleigh and Ekman number in the model under the aspect of a strong stratification of the stable layer. We show which conditions are necessary to produce a Mercury-like magnetic field and give a inside about the planets interior structure.</p>


2009 ◽  
Vol 53 (12) ◽  
pp. 1146-1154 ◽  
Author(s):  
D. P. Barsukov ◽  
P. I. Polyakova ◽  
A. I. Tsygan

2001 ◽  
Vol 16 (25) ◽  
pp. 1605-1614 ◽  
Author(s):  
J. C. MONTERO ◽  
V. PLEITEZ

We show that there is a general sort of neutrino effective interactions which allows, under certain conditions, to have relatively large magnetic dipole moments for neutrinos while keeping their masses non-calculable and arbitrarily small. The main ingredient of our mechanism for generating large magnetic moment to the neutrinos is the existence of a neutral scalar which has the only role to give mass to the neutrinos or the existence of flavor changing neutral currents in the neutrino sector. Although our approach is model independent, some models in which those interactions arise are commented.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yuefeng Che ◽  
Mohammed Yousuf Abo Keir

Abstract To study the landing point of the curved football track, the dynamic differential equations of the football were derived in this paper. The air resistance moment was taken into account, and the rotation axis was no longer confined to the vertical direction. We compare various soccer movement regularity of different initial angular velocity 0, in turn, using standard numerical methods to solve differential equations, the selection of the initial angular velocity of three typical 0s has been carried on the detailed numerical study, and the results show that: in the same velocity V play football, corresponding to different initial angular velocity 0, the movement of football is an obvious difference. Conclusion: For the same V = 5 + 28 + 11 m/s, when no rotation Ω 0 = 0, the trajectory of the football is the usual trajectory of the projectile. When 0 = 2 − 2 + 16 rad/s, the trajectory of the football is a typical banana ball trajectory; When 0 = 13+0+0 rad/s, the trajectory of the football shows the phenomenon of left-right fluttering, similar to the fallen leaf ball.


Sign in / Sign up

Export Citation Format

Share Document