scholarly journals Trajectories of a ball moving inside a spherical cavity using first integrals of the governing nonlinear system

Author(s):  
Jiří Náprstek ◽  
Cyril Fischer

AbstractAnalytical study of ball vibration absorber behavior is presented in the paper. The dynamics of trajectories of a heavy ball moving without slipping inside a spherical cavity are analyzed. Following our previous work, where a similar system was investigated through various numerical simulations, research of the dynamic properties of a sphere moving in a spherical cavity was carried out by methods of analytical dynamics. The strategy of analytical investigation enabled definition of a set of special and limit cases which designate individual domains of regular trajectories. In order to avoid any mutual interaction between the domains along a particular trajectory movement, energy dissipation at the contact of the ball and the cavity has been ignored, as has any kinematic excitation due to cavity movement. A governing system was derived using the Lagrangian formalism and complemented by appropriate non-holonomic constraints of the Pfaff type. The three first integrals are defined, enabling the evaluation of trajectory types with respect to system parameters, the initial amount of total energy, the angular momentum of the ball and its initial spin velocity. The neighborhoods of the limit trajectories and their dynamic stability are assessed. Limit and transition special cases are investigated along with their individual elements. The analytical means of investigation enabled the performance of broad parametric studies. Good agreement was found when comparing the results achieved by the analytical procedures in this paper with those obtained by means of numerical simulations, as they followed from the Lagrangian approach and the Appell–Gibbs function presented in previous papers.

2021 ◽  
Author(s):  
Jiri Naprstek ◽  
Cyril Fischer

Abstract Analytical study of ball vibration absorber behavior is presented in the paper. The dynamics of trajectories of a heavy ball moving without slipping inside a spherical cavity are analyzed. Following our previous work, where a similar system was investigated through various numerical simulations, research of the dynamic properties of a sphere moving in a spherical cavity was carried out by methods of analytical dynamics. The strategy of analytical investigation enabled definition of a set of special and limit cases which designate individual domains of regular trajectories. In order to avoid any mutual interaction between the domains along a particular trajectory movement, energy dissipation at the contact of the ball and the cavity has been ignored, as has any kinematic excitation due to cavity movement. A governing system was derived using the Lagrangian formalism and complemented by appropriate non-holonomic constraints of the Pfaff type. The three first integrals are defined, enabling the evaluation of trajectory types with respect to system parameters, the initial amount of total energy, the angular momentum of the ball and its initial spin velocity. The neighborhoods of the limit trajectories and their dynamic stability are assessed. Limit and transition special cases are investigated along with their individual elements. The analytical means of investigation enabled the performance of broad parametric studies. Good agreement was found when comparing the results achieved by the analytical procedures in this paper with those obtained by means of numerical simulations, as they followed from the Lagrangian approach and the Appell-Gibbs function presented in previous papers.


Author(s):  
Dafang Zhao ◽  
Muhammad Aamir Ali ◽  
Artion Kashuri ◽  
Hüseyin Budak ◽  
Mehmet Zeki Sarikaya

Abstract In this paper, we present a new definition of interval-valued convex functions depending on the given function which is called “interval-valued approximately h-convex functions”. We establish some inequalities of Hermite–Hadamard type for a newly defined class of functions by using generalized fractional integrals. Our new inequalities are the extensions of previously obtained results like (D.F. Zhao et al. in J. Inequal. Appl. 2018(1):302, 2018 and H. Budak et al. in Proc. Am. Math. Soc., 2019). We also discussed some special cases from our main results.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 664
Author(s):  
Jacek Jakubowski ◽  
Przemysław Fiołek

A mine shaft steelwork is a three-dimensional frame that directs the vertical motion of conveyances in mine shafts. Here, we conduct field and numerical investigations on the stiffness and dynamic properties of these structures. Based on the design documentation of the shaft, materials data, and site inspection, the steelwork’s finite element model, featuring material and geometric non-linearities, was developed in Abaqus. Static load tests of steelwork were carried out in an underground mine shaft. Numerical simulations reflecting the load test conditions showed strong agreement with the in situ measurements. The validated numerical model was used to assess the dynamic characteristics of the structure. Dynamic linear and non-linear analyses delivered the natural frequencies, mode shapes, and structural response to dynamic loads. The current practices and regulations regarding shaft steelwork design and maintenance do not account for the stiffness of guide-to-bunton connections and disregard dynamic factors. Our experimental and numerical investigations show that these connections provide considerable stiffness, which leads to the redistribution and reduction in bending moments and increased stiffness of the construction. The results also show a high dynamic amplification factor. The omission of these features implicates an incorrect assessment of the design loads and can lead to over- or under-sized structures and ultimately to shortened design working life or failure.


1999 ◽  
Vol 9 (5) ◽  
pp. 545-567 ◽  
Author(s):  
LAWRENCE C. PAULSON

A special final coalgebra theorem, in the style of Aczel (1988), is proved within standard Zermelo–Fraenkel set theory. Aczel's Anti-Foundation Axiom is replaced by a variant definition of function that admits non-well-founded constructions. Variant ordered pairs and tuples, of possibly infinite length, are special cases of variant functions. Analogues of Aczel's solution and substitution lemmas are proved in the style of Rutten and Turi (1993). The approach is less general than Aczel's, but the treatment of non-well-founded objects is simple and concrete. The final coalgebra of a functor is its greatest fixedpoint.Compared with previous work (Paulson, 1995a), iterated substitutions and solutions are considered, as well as final coalgebras defined with respect to parameters. The disjoint sum construction is replaced by a smoother treatment of urelements that simplifies many of the derivations.The theory facilitates machine implementation of recursive definitions by letting both inductive and coinductive definitions be represented as fixed points. It has already been applied to the theorem prover Isabelle (Paulson, 1994).


Author(s):  
Raffaele Di Gregorio ◽  
Alessandro Cammarata ◽  
Rosario Sinatra

The comparison of mechanisms with different topology or with different geometry, but with the same topology, is a necessary operation during the design of a machine sized for a given task. Therefore, tools that evaluate the dynamic performances of a mechanism are welcomed. This paper deals with the dynamic isotropy of 2-dof mechanisms starting from the definition introduced in a previous paper. In particular, starting from the condition that identifies the dynamically isotropic configurations, it shows that, provided some special cases are not considered, 2-dof mechanisms have at most a finite number of isotropic configurations. Moreover, it shows that, provided the dynamically isotropic configurations are excluded, the geometric locus of the configuration space that collects the points associated to configurations with the same dynamic isotropy is constituted by closed curves. This results will allow the classification of 2-dof mechanisms from the dynamic-isotropy point of view, and the definition of some methodologies for the characterization of the dynamic isotropy of these mechanisms. Finally, examples of applications of the obtained results will be given.


2017 ◽  
Vol 20 (K2) ◽  
pp. 131-140
Author(s):  
Linh Manh Ha

Knaster-Kuratowski-Mazurkiewicz type theorems play an important role in nonlinear analysis, optimization, and applied mathematics. Since the first well-known result, many international efforts have been made to develop sufficient conditions for the existence of points intersection (and their applications) in increasingly general settings: Gconvex spaces [21, 23], L-convex spaces [12], and FCspaces [8, 9]. Applications of Knaster-Kuratowski-Mazurkiewicz type theorems, especially in existence studies for variational inequalities, equilibrium problems and more general settings have been obtained by many authors, see e.g. recent papers [1, 2, 3, 8, 18, 24, 26] and the references therein. In this paper we propose a definition of generalized KnasterKuratowski-Mazurkiewicz mappings to encompass R-KKM mappings [5], L-KKM mappings [11], T-KKM mappings [18, 19], and many recent existing mappings. Knaster-KuratowskiMazurkiewicz type theorems are established in general topological spaces to generalize known results. As applications, we develop in detail general types of minimax theorems. Our results are shown to improve or include as special cases several recent ones in the literature.


2004 ◽  
Vol 127 (3) ◽  
pp. 515-519 ◽  
Author(s):  
Yongjun Lai ◽  
Marek Kujath ◽  
Ted Hubbard

A micro-machined manipulator with three kinematic degrees-of-freedom (DOF): x, y, and φ is presented. The manipulator is driven by three thermal actuators. A six DOF discrete spring-mass model of the compliant mechanism is developed which manifests the dynamic properties of the device. Numerical simulations are compared with experimental results.


Author(s):  
Yuqing Li ◽  
Xing He ◽  
Dawen Xia

Chaotic maps with higher chaotic complexity are urgently needed in many application scenarios. This paper proposes a chaotification model based on sine and cosecant functions (CMSC) to improve the dynamic properties of existing chaotic maps. CMSC can generate a new map with higher chaotic complexity by using the existing one-dimensional (1D) chaotic map as a seed map. To discuss the performance of CMSC, the chaos properties of CMSC are analyzed based on the mathematical definition of the Lyapunov exponent (LE). Then, three new maps are generated by applying three classical 1D chaotic maps to CMSC respectively, and the dynamic behaviors of the new maps are analyzed in terms of fixed point, bifurcation diagram, sample entropy (SE), etc. The results of the analysis demonstrate that the new maps have a larger chaotic region and excellent chaotic characteristics.


Author(s):  
Roberta Santoro ◽  
Alba Sofi ◽  
Federica Tubino

Abstract This paper studies the propagation of uncertainties on serviceability assessment of footbridges in unrestricted traffic condition based on a non-deterministic approach. Multi-pedestrian loading is modeled as a stationary Gaussian random process through the Equivalent Spectral Model [1] which yields analytical expressions of the spectral moments of the footbridge dynamic response. The uncertain pedestrian-induced loading parameters and structural dynamic properties are modeled as interval variables. An approximate analytical procedure, based on the Improved Interval Analysis [2], is introduced as an efficient alternative to classical optimization in order to propagate interval uncertainties. The presented procedure allows us to derive closed-form expressions of the bounds of the spectral moments of the response, as well as of the expected value and cumulative distribution function of the maximum footbridge acceleration. Two strategies are proposed to assess footbridges' serviceability. The first one leads to the definition of a range of comfort classes. The second strategy enables us to estimate an interval of probability of reaching at least a suitable comfort level.


Author(s):  
Robert J Marks II

The literature on the recovery of signals and images is vast (e.g., [23, 110, 112, 257, 391, 439, 791, 795, 933, 934, 937, 945, 956, 1104, 1324, 1494, 1495, 1551]). In this Chapter, the specific problem of recovering lost signal intervals from the remaining known portion of the signal is considered. Signal recovery is also a topic of Chapter 11 on POCS. To this point, sampling has been discrete. Bandlimited signals, we will show, can also be recovered from continuous samples. Our definition of continuous sampling is best presented by illustration.Asignal, f (t), is shown in Figure 10.1a, along with some possible continuous samples. Regaining f (t) from knowledge of ge(t) = f (t)Π(t/T) in Figure 10.1b is the extrapolation problem which has applications in a number of fields. In optics, for example, extrapolation in the frequency domain is termed super resolution [2, 40, 367, 444, 500, 523, 641, 720, 864, 1016, 1099, 1117]. Reconstructing f (t) from its tails [i.e., gi(t) = f (t){1 − Π(t/T)}] is the interval interpolation problem. Prediction, shown in Figure 10.1d, is the problem of recovering a signal with knowledge of that signal only for negative time. Lastly, illustrated in Figure 10.1e, is periodic continuous sampling. Here, the signal is known in sections periodically spaced at intervals of T. The duty cycle is α. Reconstruction of f (t) from this data includes a number of important reconstruction problems as special cases. (a) By keeping αT constant, we can approach the extrapolation problem by letting T go to ∞. (b) Redefine the origin in Figure 10.1e to be centered in a zero interval. Under the same assumption as (a), we can similarly approach the interpolation problem. (c) Redefine the origin as in (b). Then the interpolation problem can be solved by discarding data to make it periodically sampled. (d) Keep T constant and let α → 0. The result is reconstructing f (t) from discrete samples as discussed in Chapter 5. Indeed, this model has been used to derive the sampling theorem [246]. Figures 10.1b-e all illustrate continuously sampled versions of f (t).


Sign in / Sign up

Export Citation Format

Share Document