scholarly journals On the Relation between States and Maps in Infinite Dimensions

2007 ◽  
Vol 14 (04) ◽  
pp. 355-370 ◽  
Author(s):  
Janusz Grabowski ◽  
Marek Kuś ◽  
Giuseppe Marmo

Relations between states and maps, which are known for quantum systems in finite-dimensional Hilbert spaces, are formulated rigorously in geometrical terms with no use of coordinate (matrix) interpretation. In a tensor product realization they are represented simply by a permutation of factors. This leads to natural generalizations for infinite-dimensional Hilbert spaces and a simple proof of a generalized Choi Theorem. The natural framework is based on spaces of Hilbert-Schmidt operators [Formula: see text] and the corresponding tensor products [Formula: see text] of Hilbert spaces. It is proved that the corresponding isomorphisms cannot be naturally extended to compact (or bounded) operators, nor reduced to the trace-class operators. On the other hand, it is proven that there is a natural continuous map [Formula: see text] from trace-class operators on [Formula: see text] (with the nuclear norm) into compact operators mapping the space of all bounded operators on [Formula: see text] into trace class operators on [Formula: see text] (with the operator-norm). Also in the infinite-dimensional context, the Schmidt measure of entanglement and multipartite generalizations of state-maps relations are considered in the paper.

2021 ◽  
Vol 15 (2) ◽  
Author(s):  
Maximiliano Contino ◽  
Michael A. Dritschel ◽  
Alejandra Maestripieri ◽  
Stefania Marcantognini

AbstractOn finite dimensional spaces, it is apparent that an operator is the product of two positive operators if and only if it is similar to a positive operator. Here, the class $${\mathcal {L}^{+\,2}}$$ L + 2 of bounded operators on separable infinite dimensional Hilbert spaces which can be written as the product of two bounded positive operators is studied. The structure is much richer, and connects (but is not equivalent to) quasi-similarity and quasi-affinity to a positive operator. The spectral properties of operators in $${\mathcal {L}^{+\,2}}$$ L + 2 are developed, and membership in $${\mathcal {L}^{+\,2}}$$ L + 2 among special classes, including algebraic and compact operators, is examined.


Author(s):  
Shmuel Friedland ◽  
Jingtong Ge ◽  
Lihong Zhi

Strassen’s theorem circa 1965 gives necessary and sufficient conditions on the existence of a probability measure on two product spaces with given support and two marginals. In the case where each product space is finite, Strassen’s theorem is reduced to a linear programming problem which can be solved using flow theory. A density matrix of bipartite quantum system is a quantum analog of a probability matrix on two finite product spaces. Partial traces of the density matrix are analogs of marginals. The support of the density matrix is its range. The analog of Strassen’s theorem in this case can be stated and solved using semidefinite programming. The aim of this paper is to give analogs of Strassen’s theorem to density trace class operators on a product of two separable Hilbert spaces, where at least one of the Hilbert spaces is infinite-dimensional.


2019 ◽  
Vol 374 (2) ◽  
pp. 823-871 ◽  
Author(s):  
Simon Becker ◽  
Nilanjana Datta

Abstract By extending the concept of energy-constrained diamond norms, we obtain continuity bounds on the dynamics of both closed and open quantum systems in infinite dimensions, which are stronger than previously known bounds. We extensively discuss applications of our theory to quantum speed limits, attenuator and amplifier channels, the quantum Boltzmann equation, and quantum Brownian motion. Next, we obtain explicit log-Lipschitz continuity bounds for entropies of infinite-dimensional quantum systems, and classical capacities of infinite-dimensional quantum channels under energy-constraints. These bounds are determined by the high energy spectrum of the underlying Hamiltonian and can be evaluated using Weyl’s law.


2003 ◽  
Vol 3 (4) ◽  
pp. 281-306
Author(s):  
M. Keyl ◽  
D. Schlingemann ◽  
R.F. Werner

For states in infinite dimensional Hilbert spaces entanglement quantities like the entanglement of distillation can become infinite. This leads naturally to the question, whether one system in such an infinitely entangled state can serve as a resource for tasks like the teleportation of arbitrarily many qubits. We show that appropriate states cannot be obtained by density operators in an infinite dimensional Hilbert space. However, using techniques for the description of infinitely many degrees of freedom from field theory and statistical mechanics, such states can nevertheless be constructed rigorously. We explore two related possibilities, namely an extended notion of algebras of observables, and the use of singular states on the algebra of bounded operators. As applications we construct the essentially unique infinite analogue of maximally entangled states, and the singular state used heuristically in the fundamental paper of Einstein, Rosen and Podolsky.


2019 ◽  
Vol 7 (1) ◽  
pp. 67-77
Author(s):  
Shmuel Friedland

Abstract In this paper we give a simple sequence of necessary and sufficient finite dimensional conditions for a positive map between certain subspaces of bounded linear operators on separable Hilbert spaces to be completely positive. These criterions are natural generalization of Choi’s characterization for completely positive maps between pairs of linear operators on finite dimensional Hilbert spaces. We apply our conditions to a completely positive map between two trace class operators on separable Hilbert spaces. A completely positive map μ is called a quantum channel, if it is trace preserving, and μ is called a quantum subchannel if it decreases the trace of a positive operator.We give simple neccesary and sufficient condtions for μ to be a quantum subchannel.We show that μ is a quantum subchannel if and only if it hasHellwig-Kraus representation. The last result extends the classical results of Kraus and the recent result of Holevo for characterization of a quantum channel.


2010 ◽  
Vol 24 (24) ◽  
pp. 2485-2509 ◽  
Author(s):  
SUBHASHISH BANERJEE ◽  
R. SRIKANTH

We develop a unified, information theoretic interpretation of the number-phase complementarity that is applicable both to finite-dimensional (atomic) and infinite-dimensional (oscillator) systems, with number treated as a discrete Hermitian observable and phase as a continuous positive operator valued measure (POVM). The relevant uncertainty principle is obtained as a lower bound on entropy excess, X, the difference between the entropy of one variable, typically the number, and the knowledge of its complementary variable, typically the phase, where knowledge of a variable is defined as its relative entropy with respect to the uniform distribution. In the case of finite-dimensional systems, a weighting of phase knowledge by a factor μ (> 1) is necessary in order to make the bound tight, essentially on account of the POVM nature of phase as defined here. Numerical and analytical evidence suggests that μ tends to 1 as the system dimension becomes infinite. We study the effect of non-dissipative and dissipative noise on these complementary variables for an oscillator as well as atomic systems.


1984 ◽  
Vol 39 (2) ◽  
pp. 113-131
Author(s):  
Fritz Bopp

The question is often asked how to interprete quantum physics. That question does not arise in classical physics, since Newton's axioms are immediately connected with basic ideas and experiences. The same is possible in quantum physics, if we remember how elementary particle physicists describe their experiments. As Helmholtz has pointed out. the basic assumption of classical physics is that of geneidentity. That means: Bodies remain the same during their motion. Obviously, that is no longer true in quantum physics. Particles can be created and annihilated. Therefore creation and annihilation must be considered as basic processes. Motion only occurs, if a particle is annihilated in a certain point, if an equal one is created in an infinitesimally neighbouring point, and if this process is continuously going on during a certain time. Motions of that kind are compatible with the existence of some manifest creation and annihilation processes. If we accept this idea, quantum physics can be derived from first principles. As in classical physics, we know therefore what happens from the very beginning. Thus questions of interpretation become dispensable. A particular mathematical method is used to exhaust continua. The theory is formulated in a finite lattice, whose point density and extension equally go to infinity. All calculations are therefore performed in a finite dimensional Hilbert space. The results are however related to an infinite dimensional one. Earlier calculations may, therefore, be essentially correct, though they must be rejected in theories which are based on manifestly infinite dimensional Hilbert spaces. Here limiting processes do not occur in the state space. They are only admissible for numerical results.


2005 ◽  
Vol 2005 (14) ◽  
pp. 2175-2193 ◽  
Author(s):  
Pachara Chaisuriya ◽  
Sing-Cheong Ong

For each triple of positive numbersp,q,r≥1and each commutativeC*-algebraℬwith identity1and the sets(ℬ)of states onℬ, the set𝒮r(ℬ)of all matricesA=[ajk]overℬsuch thatϕ[A[r]]:=[ϕ(|ajk|r)]defines a bounded operator fromℓptoℓqfor allϕ∈s(ℬ)is shown to be a Banach algebra under the Schur product operation, and the norm‖A‖=‖|A|‖p,q,r=sup{‖ϕ[A[r]]‖1/r:ϕ∈s(ℬ)}. Schatten's theorems about the dual of the compact operators, the trace-class operators, and the decomposition of the dual of the algebra of all bounded operators on a Hilbert space are extended to the𝒮r(ℬ)setting.


2016 ◽  
Vol 16 (01) ◽  
pp. 1650003 ◽  
Author(s):  
Natasha Dobrinen

We extend the hierarchy of finite-dimensional Ellentuck spaces to infinite dimensions. Using uniform barriers [Formula: see text] on [Formula: see text] as the prototype structures, we construct a class of continuum many topological Ramsey spaces [Formula: see text] which are Ellentuck-like in nature, and form a linearly ordered hierarchy under projections. We prove new Ramsey-classification theorems for equivalence relations on fronts, and hence also on barriers, on the spaces [Formula: see text], extending the Pudlák–Rödl theorem for barriers on the Ellentuck space. The inspiration for these spaces comes from continuing the iterative construction of the forcings [Formula: see text] to the countable transfinite. The [Formula: see text]-closed partial order [Formula: see text] is forcing equivalent to [Formula: see text], which forces a non-p-point ultrafilter [Formula: see text]. This work forms the basis for further work classifying the Rudin–Keisler and Tukey structures for the hierarchy of the generic ultrafilters [Formula: see text].


2021 ◽  
Vol 8 (21) ◽  
pp. 252-266
Author(s):  
Maximilian Engel ◽  
Felix Hummel ◽  
Christian Kuehn

In this paper, we study slow manifolds for infinite-dimensional evolution equations. We compare two approaches: an abstract evolution equation framework and a finite-dimensional spectral Galerkin approximation. We prove that the slow manifolds constructed within each approach are asymptotically close under suitable conditions. The proof is based upon Lyapunov-Perron methods and a comparison of the local graphs for the slow manifolds in scales of Banach spaces. In summary, our main result allows us to change between different characterizations of slow invariant manifolds, depending upon the technical challenges posed by particular fast-slow systems.


Sign in / Sign up

Export Citation Format

Share Document