Broadband laser-driven creation of entangled state for a nonlinear coupling coupler pumped in one mode

2021 ◽  
Vol 54 (1) ◽  
Author(s):  
A. Nguyen Tuan ◽  
O. Luong Thi Tu ◽  
L. Chu Van ◽  
D. Nguyen Thi ◽  
D. Hoang Minh ◽  
...  
2020 ◽  
Author(s):  
Konstantin B. Yushkov ◽  
Vladimir Ya. Molchanov ◽  
E.A. Khazanov

Author(s):  
Richard Healey

If a quantum state is prescriptive then what state should an agent assign, what expectations does this justify, and what are the grounds for those expectations? I address these questions and introduce a third important idea—decoherence. A subsystem of a system assigned an entangled state may be assigned a mixed state represented by a density operator. Quantum state assignment is an objective matter, but the correct assignment must be relativized to the physical situation of an actual or hypothetical agent for whom its prescription offers good advice, since differently situated agents have access to different information. However this situation is described, it is true, empirically significant magnitude claims that make the description correct, while others provide the objective grounds for the agent’s expectations. Quantum models of environmental decoherence certify the empirical significance of these magnitude claims while also licensing application of the Born rule to others without mentioning measurement.


Author(s):  
Richard Healey

Often a pair of quantum systems may be represented mathematically (by a vector) in a way each system alone cannot: the mathematical representation of the pair is said to be non-separable: Schrödinger called this feature of quantum theory entanglement. It would reflect a physical relation between a pair of systems only if a system’s mathematical representation were to describe its physical condition. Einstein and colleagues used an entangled state to argue that its quantum state does not completely describe the physical condition of a system to which it is assigned. A single physical system may be assigned a non-separable quantum state, as may a large number of systems, including electrons, photons, and ions. The GHZ state is an example of an entangled polarization state that may be assigned to three photons.


Author(s):  
Stephen Piddock ◽  
Ashley Montanaro

AbstractA family of quantum Hamiltonians is said to be universal if any other finite-dimensional Hamiltonian can be approximately encoded within the low-energy space of a Hamiltonian from that family. If the encoding is efficient, universal families of Hamiltonians can be used as universal analogue quantum simulators and universal quantum computers, and the problem of approximately determining the ground-state energy of a Hamiltonian from a universal family is QMA-complete. One natural way to categorise Hamiltonians into families is in terms of the interactions they are built from. Here we prove universality of some important classes of interactions on qudits (d-level systems): We completely characterise the k-qudit interactions which are universal, if augmented with arbitrary Hermitian 1-local terms. We find that, for all $$k \geqslant 2$$ k ⩾ 2 and all local dimensions $$d \geqslant 2$$ d ⩾ 2 , almost all such interactions are universal aside from a simple stoquastic class. We prove universality of generalisations of the Heisenberg model that are ubiquitous in condensed-matter physics, even if free 1-local terms are not provided. We show that the SU(d) and SU(2) Heisenberg interactions are universal for all local dimensions $$d \geqslant 2$$ d ⩾ 2 (spin $$\geqslant 1/2$$ ⩾ 1 / 2 ), implying that a quantum variant of the Max-d-Cut problem is QMA-complete. We also show that for $$d=3$$ d = 3 all bilinear-biquadratic Heisenberg interactions are universal. One example is the general AKLT model. We prove universality of any interaction proportional to the projector onto a pure entangled state.


Author(s):  
I. A. Khodasevich ◽  
A. S. Grabtchikov ◽  
M. V. Korolkov ◽  
D. S. Mogilevtsev ◽  
E. V. Kolobkova
Keyword(s):  

2021 ◽  
Vol 147 ◽  
pp. 110930
Author(s):  
Chuanjin Zu ◽  
Yanming Gao ◽  
Xiangyang Yu

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Dong-Gil Im ◽  
Chung-Hyun Lee ◽  
Yosep Kim ◽  
Hyunchul Nha ◽  
M. S. Kim ◽  
...  

AbstractQuantum teleportation exemplifies how the transmission of quantum information starkly differs from that of classical information and serves as a key protocol for quantum communication and quantum computing. While an ideal teleportation protocol requires noiseless quantum channels to share a pure maximally entangled state, the reality is that shared entanglement is often severely degraded due to various decoherence mechanisms. Although the quantum noise induced by the decoherence is indeed a major obstacle to realizing a near-term quantum network or processor with a limited number of qubits, the methodologies considered thus far to address this issue are resource-intensive. Here, we demonstrate a protocol that allows optimal quantum teleportation via noisy quantum channels without additional qubit resources. By analyzing teleportation in the framework of generalized quantum measurement, we optimize the teleportation protocol for noisy quantum channels. In particular, we experimentally demonstrate that our protocol enables to teleport an unknown qubit even via a single copy of an entangled state under strong decoherence that would otherwise preclude any quantum operation. Our work provides a useful methodology for practically coping with decoherence with a limited number of qubits and paves the way for realizing noisy intermediate-scale quantum computing and quantum communication.


Sign in / Sign up

Export Citation Format

Share Document