Interaction of Bacterial Collagenase with the Matrix of Chitosan Ion-Exchange Fibers, Chitosan, and Chitosan Succinate During Immobilization

Author(s):  
S. M. Pankova ◽  
F. A. Sakibaev ◽  
M. G. Holyavka ◽  
V. G. Artyukhov
Membranes ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 346 ◽  
Author(s):  
Stanislav Melnikov ◽  
Denis Bondarev ◽  
Elena Nosova ◽  
Ekaterina Melnikova ◽  
Victor Zabolotskiy

Bilayer ion-exchange membranes are mainly used for separating single and multiply charged ions. It is well known that in membranes in which the layers have different charges of the ionogenic groups of the matrix, the limiting current decreases, and the water splitting reaction accelerates in comparison with monolayer (isotropic) ion-exchange membranes. We study samples of bilayer ion-exchange membranes with very thin cation-exchange layers deposited on an anion-exchange membrane-substrate in this work. It was revealed that in bilayer membranes, the limiting current’s value is determined by the properties of a thin surface film (modifying layer). A linear regularity of the dependence of the non-equilibrium effective rate constant of the water-splitting reaction on the resistance of the bipolar region, which is valid for both bilayer and bipolar membranes, has been revealed. It is shown that the introduction of the catalyst significantly reduces the water-splitting voltage, but reduces the selectivity of the membrane. It is possible to regulate the fluxes of salt ions and water splitting products (hydrogen and hydroxyl ions) by changing the current density. Such an ability makes it possible to conduct a controlled process of desalting electrolytes with simultaneous pH adjustment.


2002 ◽  
Vol 50 (6) ◽  
pp. 851-862 ◽  
Author(s):  
Yoshihiro Akimoto ◽  
Naomi Yamakawa ◽  
Kiyoshi Furukawa ◽  
Koji Kimata ◽  
Hayato Kawakami ◽  
...  

The expression and distribution of the long form of Type XII collagen were investigated histochemically during chicken corneal development using a monoclonal antibody (P3D11) raised against the N-terminal domain of chicken Type XII collagen. Specificity of the antibody was confirmed by immunoprecipitation before and after bacterial collagenase digestion. Immunofluorescent microscopic studies showed that during chicken cornea formation, the long form of Type XII collagen is initially detected on Day 3 embryo (stage 19) in the sub-epithelial matrix of the corneal periphery and in the matrix around the optic cup. On Day 5 embryo (stage 27) the long form was expressed in the primary stroma. Thereafter, as the secondary stroma was formed, the long form localized in the sub-epithelial and sub-endothelial matrices and in the anterior region of the limbus (corneoscleral junction) before the formation of Descemet's and Bowman's membranes. After hatching, the immunoreactivity decreased predominantly in the sub-epithelial and sub-endothelial matrices but remained at the anterior region of the limbus. Immunoelectron microscopic examination demonstrated that the long form localizes in the Descemet's and Bowman's membranes and along the collagen fibrils in the stroma with a periodic repeat. Based on the distribution of the long form of Type XII collagen in the sub-epithelial and sub-endothelial matrices and limbus, it was suggested that the long form of Type XII collagen is involved in formation of the Descemet's and Bowman's membranes and in stabilization of the limbus.


1987 ◽  
Vol 166 (2) ◽  
pp. 376-390 ◽  
Author(s):  
M R van Schravendijk ◽  
R J Wilson ◽  
C I Newbold

Plasmodium falciparum proteins that bind to the putative erythrocyte receptor (glycophorin) have been identified in several laboratories by their ability to bind to glycophorin immobilized on aminoethyl-BioGel (AE-BioGel). We here report that several parasite proteins bind to AE-BioGel in the absence of coupled glycophorin. Binding is apparently due to the strong ion-exchange properties of the matrix, and is sensitive to ionic conditions such as the degree of equilibration of the matrix and the pH. The parasite proteins that bind to the blank column under appropriate conditions include proteins with the serological activities of S-antigen and Ag 23, which also bind to glycophorin-coupled AE-BioGel. In the light of these results, the glycophorin-binding specificity of these and other proteins reported to bind to glycophorin-coupled AE-BioGel will have to be reevaluated, preferably using a different support matrix.


1980 ◽  
Vol 58 (21) ◽  
pp. 2250-2254 ◽  
Author(s):  
Ishwari P. Saraswat ◽  
Suresh K. Srivastava ◽  
Surendra K. Verma ◽  
Ashok K. Sharma

The sorption of ammine complex cations of Co(III), viz. [Co(NH3)6]3+ and [Co(en)3]3+, on the H+ form of chromium ferrocyanide gel has been studied under static conditions. It is observed that the majority of these complex cations (90%) are sorbed by ion-exchange process. The extent of desorption of these complex ions with some uni- and bivalent cations is in the order K+ > NH4+ > Ba2+ > Sr2+ > Ca2+ > Mg2+.Infrared, Mössbauer, and magnetic susceptibility studies on the air-dried and powdered gel in H+ form and loaded with [Co(NH3)6]3+, [Co(en)3]3+, Fe3+, and La3+ ions show that prussiate compounds are not formed during the gel formation and the sorbed cations are held by the electrostatic attraction forces in the matrix, which is strained by the sorption of the big cations.


Author(s):  
Tatyana E. Fertikova ◽  
Sergey V. Fertikov ◽  
Ekaterina M. Isaeva ◽  
Vyacheslav A. Krysanov ◽  
Tamara A. Kravchenko

New metal-polymer nanocomposites for deep water deoxygenation have been obtained and studied. A macro- and monoporous sulphocation exchanger with a nanometer pore size was used as the polymer matrix, and the metal was nanodispersed copper deposited in the pores of the matrix. A specific feature of the studied nanocomposites is their sodium ionic form, which eliminates the possibility of the formation of soluble copper oxidation products. The established linear dependence of the copper capacity on the number of cycles of ion-exchange saturation - chemical deposition shows that the process of metal deposition into the pores of the matrix does not have significant obstacles during 10 cycles and contributes to the production of high-capacity samples.The high efficiency and duration of the life cycle of high-capacity copper ion exchanger nanocomposites have been shown. Experimental studies of water deoxygenation in column-type apparatus with a nanocomposite nozzle were confirmed by a theoretical analysis of the process dynamics. Experimental data and theoretical calculations showed the deep level of water deoxygenation had practically unchanged values of pH and electrical conductivity. Residual oxygen can be controlled and does not exceed 3 μg/l (ppb).The hygienic and economic substantiation of the expediency of using the obtained nanocomposites is provided. The necessity of using modern nanocomposite metal-polymer materials for deep water deoxygenation circulating in technological systems was analysed. When using this innovation, the metal components of the distribution facilities will be protected from corrosion and, therefore, the hygienic requirements for the water quality of centralised drinking water supply systems will be ensured. Deep chemical water deoxygenation using copper ion-exchange polymer nanocomposites in sodium formallows solving the problem of the corrosion resistance of metals, ensuring that water meets hygienic requirements on a large scale.The competitive advantage of the considered water deoxygenation system in comparison with the known systems is the rejection of the use of precious metals-catalysts (palladium, platinum), pure hydrogen, and complex design solutions. The proposed new nanocomposite installation for water deoxygenation is characterised by its ease of use and can be built into a filter system for water purification.SWOT analysis of the advantages and disadvantages of the proposed method of water deoxygenation showed that its main advantages are the high oxygen capacity of the nanocomposite, low residual oxygen content (3 ppb (μg/l)) in the water, and ease of operation of the deoxygenator. Calculations of the economic efficiency of the nanocomposite have been carried out. The breakeven point is reached when producing only ~100 l of nanocomposite and a volume of sales ~1,600,000 roubles, above which a profit can be obtained. The payback period for an investment of ~15,000,000 roubles is rather short and will not exceed 2 years.


2018 ◽  
Vol 149 ◽  
pp. 01056
Author(s):  
S. Labied ◽  
T. El ghailassi ◽  
A. Bouih ◽  
L. Moutei ◽  
Y. Benbrahim ◽  
...  

Radioactive waste arising as a result of nuclear activities should be safely managed from its generation to final disposal in an appropriate conditioned form to reduce the risk of radiation exposure of technical personnel and of the public and to limit contamination of the environment. The immobilization of low and intermediate level radioactive wastes in cementitious matrices is the most commonly used technique to produce inexpensive waste matrix that complies with regulatory requirements in order to protect humans and the environment against nuisance caused by ionizing radiation. Cement based materials are used in radioactive waste management to produce stable waste forms. This matrix constitutes the first build engineering barrier in disposal facilities. In this work, the kaolin is used to enhance the mechanical performance of the matrix of confinement of ion exchange resins by gradually replacing the sand in mortar with kaolin clay. The Kaolin clay sample was a special pure product, sourced from a foreign country. The maximum quantity of resins that can be incorporated into the mortar formulation without the packages losing their strength is 13.915% which results in a better mechanical strength at 6.7686 MPA compression with kaolin.


Author(s):  
Wim C. de Bruijn ◽  
Lianne W.J. Sorber

The application of standards, with a known externally determined element concentration, for the determination of unknown concentrations in cell organelles and tissue is a well known practice in X-ray microanalysis.The conditions to be met for a good standard have been formulated earlier. Pure element standards and standards made from PVP-films have been proposed for Electron Energy loss analysis. In this presentation we investigate the use for EELS-analysis of the ion-exchange bead Chelex100-type of standards, which can be co-embedded with tissue and have been applied successfully for X-ray microanalysis.The ion-exchange characteristics, the methods of loading and the matrix composition have been described before. Such bio-standards, which can be loaded with a variety of cations, are stored as a dry powder and can be co-embedded with the tissue to be analyzed. In that way the standard is present in each ultrathin section, at (an assumed) equal thickness as the cells or tissue, containing the unknown concentration of that element.


1984 ◽  
Vol 220 (2) ◽  
pp. 395-403 ◽  
Author(s):  
K R Knight ◽  
S Ayad ◽  
C A Shuttleworth ◽  
M E Grant

A collagenous glycoprotein (Mr 140000) was isolated from dissociative extracts of foetal bovine nuchal ligament and purified by a combination of ion-exchange and gel-filtration chromatography. This glycoprotein (designated MFPI) exists as a large-Mr disulphide-bonded aggregate in the absence of a reducing agent. The purified glycoprotein was shown to contain about 6% (w/w) carbohydrate, mostly as galactose, glucose and mannose. Amino acid analysis showed the presence of hydroxyproline and hydroxylysine, indicative of its collagenous nature. The collagenous nature of this glycoprotein was further investigated by enzyme digestion. Pepsin digestion produced three major fragments, which were identical with peptides of type VI collagen. Bacterial-collagenase digestion of the unreduced glycoprotein also produced several discrete peptides. However, reduction of the glycoprotein before bacterial-collagenase digestion resulted in the degradation of these discrete peptides. Glycoprotein MFPI extracted in dissociative conditions appears to be a larger-Mr form of type VI collagen, believed to originate from microfibrillar components in the intact tissue.


Author(s):  
Odell T. Minick ◽  
Hidejiro Yokoo

Mitochondrial alterations were studied in 25 liver biopsies from patients with alcoholic liver disease. Of special interest were the morphologic resemblance of certain fine structural variations in mitochondria and crystalloid inclusions. Four types of alterations within mitochondria were found that seemed to relate to cytoplasmic crystalloids.Type 1 alteration consisted of localized groups of cristae, usually oriented in the long direction of the organelle (Fig. 1A). In this plane they appeared serrated at the periphery with blind endings in the matrix. Other sections revealed a system of equally-spaced diagonal lines lengthwise in the mitochondrion with cristae protruding from both ends (Fig. 1B). Profiles of this inclusion were not unlike tangential cuts of a crystalloid structure frequently seen in enlarged mitochondria described below.


Sign in / Sign up

Export Citation Format

Share Document