Neuroprotective effects of paeoniflorin in neurodegenerative diseases of the central nervous system

2017 ◽  
Vol 16 (6) ◽  
pp. 1173-1181 ◽  
Author(s):  
Azadeh Manayi ◽  
Sahar Omidpanah ◽  
Davide Barreca ◽  
Silvana Ficarra ◽  
Maria Daglia ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yang Tian ◽  
Chen Fu ◽  
Yifan Wu ◽  
Yao Lu ◽  
Xuemei Liu ◽  
...  

Exosomes are a type of extracellular vesicles secreted by almost all kinds of mammalian cells that shuttle “cargo” from one cell to another, indicative of its role in cell-to-cell transportation. Interestingly, exosomes are known to undergo alterations or serve as a pathway in multiple diseases, including neurodegenerative diseases. In the central nervous system (CNS), exosomes originating from neurons or glia cells contribute to or inhibit the progression of CNS-related diseases in special ways. In lieu of this, the current study investigated the effect of CNS cell-derived exosomes on different neurodegenerative diseases.


Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 811 ◽  
Author(s):  
Denis Nchang Che ◽  
Byoung Ok Cho ◽  
Ji-su Kim ◽  
Jae Young Shin ◽  
Hyun Ju Kang ◽  
...  

Microglia cells are resident cells of the central nervous system (CNS) charged with modulating inflammation in the CNS. Overstimulation of microglia cells continuously releases inflammatory mediators that contribute to neurodegenerative diseases. Apigenin and Luteolin are flavonoids with reported anti-inflammatory activities. However, their effects on IL-31 and IL-33 production in microglial cells are unknown. Here, we investigated the effects of apigenin and luteolin on the production of IL-31 and IL-33 by microglia cells. SIM-A9 microglial cells were pre-treated with apigenin or luteolin and stimulated with lipopolysaccharides to evaluate the production of IL-31 and IL-33. The study revealed that apigenin and luteolin inhibited the production of IL-31 and IL-33 at the gene and protein expressions and the secretion levels. Using potent inhibitors of MAPK, NF-κB, and STAT3 signaling pathways, we demonstrated that apigenin and luteolin’s suppression of ERK and JNK contributed to the inhibition of IL-31 and IL-33 in the MAPK pathway. Luteolin’s suppression of NF-κB and STAT3 also contributed to the inhibition of IL-31 and IL-33. Further analysis revealed that both compounds prevented nuclear translocation of activated NF-κB and STAT3, an act that subsequently prevented their DNA binding activities. Collectively, the study suggested that apigenin and luteolin’s regulation of signaling pathways contributed to the inhibition of IL-31 and IL-33, thus suggesting its importance for the improvement of neurodegenerative diseases involving these two cytokines.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Alessandra Cadete Martini ◽  
Stefânia Forner ◽  
Allisson Freire Bento ◽  
Giles Alexander Rae

Many diseases of the central nervous system are characterized and sometimes worsened by an intense inflammatory response in the affected tissue. It is now accepted that resolution of inflammation is an active process mediated by a group of mediators that can act in synchrony to switch the phenotype of cells, from a proinflammatory one to another that favors the return to homeostasis. This new genus of proresolving mediators includes resolvins, protectins, maresins, and lipoxins, the first to be discovered. In this short review we provide an overview of current knowledge into the cellular and molecular interactions of lipoxins in diseases of the central nervous system in which they appear to facilitate the resolution of inflammation, thus exerting a neuroprotective action.


2020 ◽  
Vol 8 (2) ◽  
pp. 130-146
Author(s):  
Afshin Montazeri ◽  
Milad Akhlaghi ◽  
Ahmad Reza Barahimi ◽  
Ali Jahanbazi Jahan Abad ◽  
Reza Jabbari ◽  
...  

2020 ◽  
Vol 18 (11) ◽  
pp. 1054-1063 ◽  
Author(s):  
Vladimir N. Nikolenko ◽  
Marine V. Oganesyan ◽  
Angela D. Vovkogon ◽  
Arina T. Nikitina ◽  
Ekaterina A. Sozonova ◽  
...  

Until recently, it was thought that there were no lymphatic vessels in the central nervous system (CNS). Therefore, all metabolic processes were assumed to take place only in the circulation of the cerebrospinal fluid (CSF) and through the blood-brain barrier’s (BBB), which regulate ion transport and ensure the functioning of the CNS. However, recent findings yield a new perspective: There is an exchange of CSF with interstitial fluid (ISF), which is drained to the paravenous space and reaches lymphatic nodes at the end. This circulation is known as the glymphatic system. The glymphatic system is an extensive network of meningeal lymphatic vessels (MLV) in the basal area of the skull that provides another path for waste products from CNS to reach the bloodstream. MLV develop postnatally, initially appearing around the foramina in the basal part of the skull and the spinal cord, thereafter sprouting along the skull’s blood vessels and spinal nerves in various areas of the meninges. VEGF-C protein (vascular endothelial growth factor), expressed mainly by vascular smooth cells, plays an important role in the development of the MLV. The regenerative potential and plasticity of MLV and the novel discoveries related to CNS drainage offer potential for the treatment of neurodegenerative diseases such as dementia, hydrocephalus, stroke, multiple sclerosis, and Alzheimer disease (AD). Herein, we present an overview of the structure and function of the glymphatic system and MLV, and their potential involvement in the pathology and progression of neurodegenerative diseases.


Medicines ◽  
2018 ◽  
Vol 5 (3) ◽  
pp. 91 ◽  
Author(s):  
Francesca Gado ◽  
Maria Digiacomo ◽  
Marco Macchia ◽  
Simone Bertini ◽  
Clementina Manera

Recent findings highlight the emerging role of the endocannabinoid system in the control of symptoms and disease progression in multiple sclerosis (MS). MS is a chronic, immune-mediated, demyelinating disorder of the central nervous system with no cure so far. It is widely reported in the literature that cannabinoids might be used to control MS symptoms and that they also might exert neuroprotective effects and slow down disease progression. This review aims to give an overview of the principal cannabinoids (synthetic and endogenous) used for the symptomatic amelioration of MS and their beneficial outcomes, providing new potentially possible perspectives for the treatment of this disease.


Sign in / Sign up

Export Citation Format

Share Document