scholarly journals Current Understanding of Central Nervous System Drainage Systems: Implications in the Context of Neurodegenerative Diseases

2020 ◽  
Vol 18 (11) ◽  
pp. 1054-1063 ◽  
Author(s):  
Vladimir N. Nikolenko ◽  
Marine V. Oganesyan ◽  
Angela D. Vovkogon ◽  
Arina T. Nikitina ◽  
Ekaterina A. Sozonova ◽  
...  

Until recently, it was thought that there were no lymphatic vessels in the central nervous system (CNS). Therefore, all metabolic processes were assumed to take place only in the circulation of the cerebrospinal fluid (CSF) and through the blood-brain barrier’s (BBB), which regulate ion transport and ensure the functioning of the CNS. However, recent findings yield a new perspective: There is an exchange of CSF with interstitial fluid (ISF), which is drained to the paravenous space and reaches lymphatic nodes at the end. This circulation is known as the glymphatic system. The glymphatic system is an extensive network of meningeal lymphatic vessels (MLV) in the basal area of the skull that provides another path for waste products from CNS to reach the bloodstream. MLV develop postnatally, initially appearing around the foramina in the basal part of the skull and the spinal cord, thereafter sprouting along the skull’s blood vessels and spinal nerves in various areas of the meninges. VEGF-C protein (vascular endothelial growth factor), expressed mainly by vascular smooth cells, plays an important role in the development of the MLV. The regenerative potential and plasticity of MLV and the novel discoveries related to CNS drainage offer potential for the treatment of neurodegenerative diseases such as dementia, hydrocephalus, stroke, multiple sclerosis, and Alzheimer disease (AD). Herein, we present an overview of the structure and function of the glymphatic system and MLV, and their potential involvement in the pathology and progression of neurodegenerative diseases.

2020 ◽  
Vol 9 (3) ◽  
pp. 81-89
Author(s):  
G. S. Yankova ◽  
O. B. Bogomyakova

The lymphatic drainage system of the brain is assumed to consist of the lymphatic system and a network of meningeal lymphatic vessels. This system supports brain homeostasis, participates in immune surveillance and presents a new therapeutic target in the treatment of neurological disorders.The article analyzes and systematizes data on the brain lymphatic drainage system. The key components of this system are considered: recently described meningeal lymphatic vessels and their relationship with the glymphatic system, which provides perfusion of the central nervous system with cerebrospinal and interstitial fluids. The lymphatic drainage system helps to maintain water and ion balances of the interstitial fluid and to remove metabolic waste products, assists in reabsorption of macromolecules. Disorders in its work play a crucial role in age-related changes in the brain, the pathogenesis of neurovascular and neurodegenerative diseases, as well as injuries and brain tumors. The review also presents the results of human studies concerning the presence, anatomy and structure of meningeal lymphatic vessels and the glymphatic system. The discovery of the brain lymphatic drainage system has not only changed our understanding of cerebrospinal fluid circulation, but also contributed to understanding the pathology and mechanisms of neurodegenerative diseases.


2020 ◽  
Vol 27 (34) ◽  
pp. 5790-5828 ◽  
Author(s):  
Ze Wang ◽  
Chunyang He ◽  
Jing-Shan Shi

Neurodegenerative diseases are a heterogeneous group of disorders characterized by the progressive degeneration of the structure and function of the central nervous system or peripheral nervous system. Alzheimer's Disease (AD), Parkinson's Disease (PD) and Spinal Cord Injury (SCI) are the common neurodegenerative diseases, which typically occur in people over the age of 60. With the rapid development of an aged society, over 60 million people worldwide are suffering from these uncurable diseases. Therefore, the search for new drugs and therapeutic methods has become an increasingly important research topic. Natural products especially those from the Traditional Chinese Medicines (TCMs), are the most important sources of drugs, and have received extensive interest among pharmacist. In this review, in order to facilitate further chemical modification of those useful natural products by pharmacists, we will bring together recent studies in single natural compound from TCMs with neuroprotective effect.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yang Tian ◽  
Chen Fu ◽  
Yifan Wu ◽  
Yao Lu ◽  
Xuemei Liu ◽  
...  

Exosomes are a type of extracellular vesicles secreted by almost all kinds of mammalian cells that shuttle “cargo” from one cell to another, indicative of its role in cell-to-cell transportation. Interestingly, exosomes are known to undergo alterations or serve as a pathway in multiple diseases, including neurodegenerative diseases. In the central nervous system (CNS), exosomes originating from neurons or glia cells contribute to or inhibit the progression of CNS-related diseases in special ways. In lieu of this, the current study investigated the effect of CNS cell-derived exosomes on different neurodegenerative diseases.


1971 ◽  
Vol 123 (1) ◽  
pp. 57-67 ◽  
Author(s):  
P. R. Carnegie

Myelin from the central nervous system contains an unusual basic protein, which can induce experimental autoimmune encephalomyelitis. The basic protein from human brain was digested with trypsin and other enzymes and the sequence of the 170 amino acids was determined. The localization of the encephalitogenic determinants was described. Possible roles for the protein in the structure and function of myelin are discussed.


‘Neuroanatomy and neurophysiology’ covers the anatomy and organization of the central nervous system, including the skull and cervical vertebrae, the meninges, the blood and lymphatic vessels, muscles and nerves of the head and neck, and the structures of the eye, ear, and central nervous system. At a cellular level, the different cell types and the mechanism of transmission across synapses are considered, including excitatory and inhibitory synapses. This is followed by a review of the major control and sensory systems (including movement, information processing, locomotion, reflexes, and the main five senses of sight, hearing, touch, taste, and smell). The integration of these processes into higher functions (such as sleep, consciousness and coma, emotion, memory, and ageing) is discussed, along with the causes and treatments of disorders of diseases such as depression, schizophrenia, epilepsy, addiction, and degenerative diseases.


Sign in / Sign up

Export Citation Format

Share Document