Beneficial effects of bacteria-plant communication based on quorum sensing molecules of the N -acyl homoserine lactone group

2016 ◽  
Vol 90 (6) ◽  
pp. 605-612 ◽  
Author(s):  
Adam Schikora ◽  
Sebastian T. Schenk ◽  
Anton Hartmann
2013 ◽  
Vol 825 ◽  
pp. 107-110
Author(s):  
Sören Bellenberg ◽  
Robert Barthen ◽  
Mario Vera ◽  
Nicolas Guiliani ◽  
Wolfgang Sand

A functional luxIR-type Quorum Sensing (QS) system is present in Acidithiobacillus ferrooxidans. However, cell-cell communication among various acidophilic chemolithoautotrophs growing on pyrite has not been studied in detail. These aspects are the scope of this study with emphasis on the effects exerted by the N-acyl-homoserine lactone (AHL) type signaling molecules which are produced by Acidithiobacillus ferrooxidans. Their effects on attachment and leaching efficiency by other leaching bacteria, such as Acidithiobacillus ferrivorans, Acidiferrobacter spp. SPIII/3 and Leptospirillum ferrooxidans in pure and mixed cultures growing on pyrite is shown.


2013 ◽  
Vol 76 (2) ◽  
pp. 239-247 ◽  
Author(s):  
IQBAL KABIR JAHID ◽  
NA-YOUNG LEE ◽  
ANNA KIM ◽  
SANG-DO HA

Aeromonas hydrophila recently has received increased attention because it is opportunistic and a primary human pathogen. A. hydrophila biofilm formation and its control are a major concern for food safety because biofilms are related to virulence. Therefore, we investigated biofilm formation, motility inhibition, quorum sensing, and exoprotease production of this opportunistic pathogen in response to various glucose concentrations from 0.05 to 2.5% (wt/vol). More than 0.05% glucose significantly impaired (P < 0.05) quorum sensing, biofilm formation, protease production, and swarming and swimming motility, whereas bacteria treated with 0.05% glucose had activity similar to that of the control (0% glucose). A stage shift biofilm assay revealed that the addition of glucose (2.5%) inhibited initial biofilm formation but not later stages. However, addition of quorum sensing molecules N-3-butanoyl-DL-homoserine lactone and N-3-hexanoyl homoserine lactone partially restored protease production, indicating that quorum sensing is controlled by glucose concentrations. Thus, glucose present in food or added as a preservative could regulate acyl-homoserine lactone quorum sensing molecules, which mediate biofilm formation and virulence in A. hydrophila.


mBio ◽  
2017 ◽  
Vol 8 (3) ◽  
Author(s):  
Rita S. Valente ◽  
Pol Nadal-Jimenez ◽  
André F. P. Carvalho ◽  
Filipe J. D. Vieira ◽  
Karina B. Xavier

ABSTRACT Bacterial communities can sense their neighbors, regulating group behaviors in response to cell density and environmental changes. The diversity of signaling networks in a single species has been postulated to allow custom responses to different stimuli; however, little is known about how multiple signals are integrated and the implications of this integration in different ecological contexts. In the plant pathogen Pectobacterium wasabiae (formerly Erwinia carotovora), two signaling networks—the N-acyl homoserine lactone (AHL) quorum-sensing system and the Gac/Rsm signal transduction pathway—control the expression of secreted plant cell wall-degrading enzymes, its major virulence determinants. We show that the AHL system controls the Gac/Rsm system by affecting the expression of the regulatory RNA RsmB. This regulation is mediated by ExpR2, the quorum-sensing receptor that responds to the P. wasabiae cognate AHL but also to AHLs produced by other bacterial species. As a consequence, this level of regulation allows P. wasabiae to bypass the Gac-dependent regulation of RsmB in the presence of exogenous AHLs or AHL-producing bacteria. We provide in vivo evidence that this pivotal role of RsmB in signal transduction is important for the ability of P. wasabiae to induce virulence in response to other AHL-producing bacteria in multispecies plant lesions. Our results suggest that the signaling architecture in P. wasabiae was coopted to prime the bacteria to eavesdrop on other bacteria and quickly join the efforts of other species, which are already exploiting host resources. IMPORTANCE Quorum-sensing mechanisms enable bacteria to communicate through small signal molecules and coordinate group behaviors. Often, bacteria have various quorum-sensing receptors and integrate information with other signal transduction pathways, presumably allowing them to respond to different ecological contexts. The plant pathogen Pectobacterium wasabiae has two N-acyl homoserine lactone receptors with apparently the same regulatory functions. Our work revealed that the receptor with the broadest signal specificity is also responsible for establishing the link between the main signaling pathways regulating virulence in P. wasabiae. This link is essential to provide P. wasabiae with the ability to induce virulence earlier in response to higher densities of other bacterial species. We further present in vivo evidence that this novel regulatory link enables P. wasabiae to join related bacteria in the effort to degrade host tissue in multispecies plant lesions. Our work provides support for the hypothesis that interspecies interactions are among the major factors influencing the network architectures observed in bacterial quorum-sensing pathways. IMPORTANCE Quorum-sensing mechanisms enable bacteria to communicate through small signal molecules and coordinate group behaviors. Often, bacteria have various quorum-sensing receptors and integrate information with other signal transduction pathways, presumably allowing them to respond to different ecological contexts. The plant pathogen Pectobacterium wasabiae has two N-acyl homoserine lactone receptors with apparently the same regulatory functions. Our work revealed that the receptor with the broadest signal specificity is also responsible for establishing the link between the main signaling pathways regulating virulence in P. wasabiae. This link is essential to provide P. wasabiae with the ability to induce virulence earlier in response to higher densities of other bacterial species. We further present in vivo evidence that this novel regulatory link enables P. wasabiae to join related bacteria in the effort to degrade host tissue in multispecies plant lesions. Our work provides support for the hypothesis that interspecies interactions are among the major factors influencing the network architectures observed in bacterial quorum-sensing pathways.


2006 ◽  
Vol 89 (3-4) ◽  
pp. 167-211 ◽  
Author(s):  
Debra Smith ◽  
Jin-Hong Wang ◽  
Jane E. Swatton ◽  
Peter Davenport ◽  
Bianca Price ◽  
...  

2006 ◽  
Vol 58 (2) ◽  
pp. 155-168 ◽  
Author(s):  
Ludovic Vial ◽  
Caroline Cuny ◽  
Katia Gluchoff-Fiasson ◽  
Gilles Comte ◽  
Phil M. Oger ◽  
...  

PLoS ONE ◽  
2018 ◽  
Vol 13 (8) ◽  
pp. e0202587 ◽  
Author(s):  
Cécilia Landman ◽  
Jean-Pierre Grill ◽  
Jean-Maurice Mallet ◽  
Philippe Marteau ◽  
Lydie Humbert ◽  
...  

2006 ◽  
Vol 69 (11) ◽  
pp. 2729-2737 ◽  
Author(s):  
M. LIU ◽  
J. M. GRAY ◽  
M. W. GRIFFITHS

Proteolytic pseudomonads dominate the spoilage flora of aerobically chill-stored proteinaceous raw foods. Proteolysis during spoilage of these food systems affects both food quality and the dynamics of the bacterial community because it increases the availability of nutrients to the community as a whole. Quorum sensing, or cell-cell signaling, is associated closely with ecological interactions among bacteria in mixed communities. The potential role of quorum sensing in proteolytic food spoilage was examined, based on the evaluation of N-acyl-homoserine lactone (AHL) signal molecules. The occurrence of proteolytic activity and AHL signals was studied during spoilage of aerobically chill-stored ground beef, fish, chicken, and raw milk. Pseudomonads dominated the psychrotrophic flora, followed distantly by members of the Enterobacteriaceae. The growth of pseudomonads was correlated with the occurrence of proteolytic activity in all food systems. AHL concentration began increasing significantly only after the onset of proteolytic activity. Widely divergent AHL profiles were revealed by thin-layer chromatography analysis of the different food samples, and these profiles were likely determined by the undefined bacterial flora in these systems and by the characterized pseudomonads and Enterobacteriaceae. Although Hafnia alvei was a major component of the Enterobacteriaceae flora in all foods tested and a strong AHL producer, the signal molecules produced by H. alvei strain EB1 did not influence protease production by Pseudomonas fluorescens strain 395 in vitro. These results do not indicate any clear correlation between the overall detectable AHL signal molecules accumulated in the food samples and proteolytic activity.


2019 ◽  
Vol 3 (3) ◽  
pp. 191-202 ◽  
Author(s):  
Abhishek Shrestha ◽  
Ahmed Elhady ◽  
Shimaa Adss ◽  
Gwendolin Wehner ◽  
Christoph Böttcher ◽  
...  

Enhanced resistance in barley (Hordeum vulgare) against pathogens, such as the powdery mildew-causing fungus Blumeria graminis f. sp. hordei, is of high importance. The beneficial effects of bacterial quorum sensing molecules on resistance and plant growth have been shown in different plant species. Here, we present the effects of the N-3-oxotetradecanoyl-l-homoserine lactone (oxo-C14-HSL) on the resistance of different barley genotypes. Genetically diverse accessions of barley were identified and exposed to the beneficial, oxo-C14-HSL-producing bacterium Ensifer meliloti or the pure N-acyl homoserine lactone (AHL) molecule. Metabolic profiling along with expression analysis of selected genes and physiological assays revealed that the capacity to react varies among different barley genotypes. We demonstrate that upon pretreatment with AHL molecule, AHL-primable barley genotype expresses enhanced resistance against B. graminis f. sp. hordei. We further show that pretreatment with AHL correlates with stronger activation of barley MAP kinases and regulation of defense-related PR1 and PR17b genes after a subsequent treatment with chitin. Noticeable was the stronger accumulation of lignin. Our results suggest that appropriate genetic background is required for AHL-induced priming. At the same time, they bear potential to use these genetic features for new breeding and plant protection approaches.


Sign in / Sign up

Export Citation Format

Share Document