Tradeoffs between nitrogen- and water-use efficiency in dominant species of the semiarid steppe of Inner Mongolia

2010 ◽  
Vol 340 (1-2) ◽  
pp. 227-238 ◽  
Author(s):  
Xiao Ying Gong ◽  
Qing Chen ◽  
Shan Lin ◽  
Holger Brueck ◽  
Klaus Dittert ◽  
...  
2009 ◽  
Vol 328 (1-2) ◽  
pp. 495-505 ◽  
Author(s):  
Holger Brueck ◽  
Klaus Erdle ◽  
Yingzhi Gao ◽  
Marcus Giese ◽  
Ying Zhao ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Yunying Wang ◽  
Weiwei Pei ◽  
Guangmin Cao ◽  
Xiaowei Guo ◽  
Huakun Zhou ◽  
...  

Water use efficiency is an important indicator of drought tolerance in plants. The response of the water use efficiency to different grazing intensities and adaptive mechanisms in alpine meadows remains unclear. To understand the changes in water use in alpine meadow ecosystems under different grazing gradients, grazing systems have to be optimized, and severely receding grasslands should be effectively restored. This study analyzed the response of water use efficiency of plant dominant species, coexisting species, and functional group-level plants to grazing intensity using the δ13C index in an alpine meadow. We found that grazing increased the leaf carbon isotope composition in plants (δ13C) of Gramineae by 3.37% and grazing at a moderate level significantly increased it by 4.84% (P < 0.05). In addition, an increase in δ13C was observed in the functional groups of Cyperaceae (3.45%), Leguminosae (0.81%), and Forb (1.40%). However, some dominant species and coexisting species showed the highest δ13C values under moderate grazing. These results indicate that moderate grazing may significantly improve the water use efficiency of species in alpine meadows. The path analysis showed that water use efficiency was negatively correlated with evapotranspiration (P < 0.05), soil water content, soil organic carbon, and soil bulk density. Nevertheless, there was a positive correlation between water use efficiency and the available nitrogen. This study concluded that moderate grazing could improve the efficiency of grassland water use to a certain extent. Additionally, soil evapotranspiration was the main driving factor affecting the water use efficiency of alpine meadows.


Agronomy ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 3 ◽  
Author(s):  
Jiying Sun ◽  
Julin Gao ◽  
Zhigang Wang ◽  
Shuping Hu ◽  
Fengjie Zhang ◽  
...  

Subsoil tillage loosens compacted soil for better plant growth, but promotes water loss, which is a concern in areas that are commonly irrigated. Therefore, our objective was to determine the physiological responses of high yield spring maize (Zea mays L.) to subsoil tillage depth when grown in the Western plain irrigation area of Inner Mongolia, China. Our experiment during 2014 and 2015 used Zhengdan958 (Hybrid of Zheng58 × Chang7-2, produced by Henan academy of agricultural sciences of China, with the characteristics of tight plant type and high yield) and Xianyu335 (Hybrid of PH6WC × PH4CV, produced by Pioneer Corp of USA, with the characteristic of high yield and suitable of machine-harvesting) with three differing subsoil tillage depths (30, 40, or 50 cm) as the trial factor and shallow rotary tillage as a control. The results indicated that subsoil tillage increased shoot dry matter accumulation, leading to a greater shoot/root ratio. Subsoil tillage helped retain a greater leaf area index in each growth stage, increased the leaf area duration, net assimilation rate, and relative growth rate, and effectively delayed the aging of the blade. On average, compared with shallow rotary, the grain yields and water use efficiency increased by 0.7–8.9% and 1.93–18.49% in subsoil tillage treatment, respectively, resulting in the net income being increased by 2.24% to 6.97%. Additionally, the grain yield, water use efficiency, and net income were the highest under the treatment of a subsoil tillage depth of 50 cm. The results provided a theoretical basis for determining the suitable chiseling depth for high-yielding spring corn in the Western irrigation plains of Inner Mongolia.


2015 ◽  
Vol 35 (10) ◽  
Author(s):  
王海青 WANG Haiqing ◽  
田育红 TIAN Yuhong ◽  
黄薇霖 HUANG Weilin ◽  
肖随丽 XIAO Suili

Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 598 ◽  
Author(s):  
Limai Guo ◽  
Fubao Sun ◽  
Wenbin Liu ◽  
Yongguang Zhang ◽  
Hong Wang ◽  
...  

Ecosystem water use efficiency (WUE describes carbon-water flux coupling in terrestrial ecosystems. Understanding response and resilience of WUE to drought are essential for sustainable water resource and ecosystem management under increasing drought risks over China due to climate warming. Here we analyzed the response of ecosystem WUE to drought (spatiotemporal variability and resilience) over China during 1982–2015 based on an evapotranspiration (ET) dataset based on the model tree ensemble (MTE) algorithm using flux-tower ET measurements and satellite-retrieved GPP data. The results showed that the multiyear average WUE was 1.55 g C kg−1 H2O over China. WUE increased in 77.1% of Chinese territory during the past 34 years. During drought periods, the ecosystem WUE increased mainly in the northeast of Inner Mongolia, Northeast China and some regions in southern China with abundant forests but decreased in northwestern and central China. An apparent lagging effect of drought on ecosystem WUE was observed in the east of Inner Mongolia and Northeast China, the west and east regions of North China and the central part of Tibetan Plateau. Some ecosystems (e.g., deciduous needle-leaf forests, deciduous broadleaf forests, evergreen broadleaf forests and evergreen needle-leaf forests) in Central China, Northeast and Southwest China exhibited relatively greater resilience to drought than others by improving their WUE. Our findings would provide useful information for Chinese government to adopt a reasonable approach for maintaining the structure and functions of ecosystems under drought disturbance in future.


Sign in / Sign up

Export Citation Format

Share Document