Role of a Newly Cloned Alternative Oxidase Gene (BjAOX1a) in Turnip Mosaic Virus (TuMV) Resistance in Mustard

2011 ◽  
Vol 30 (2) ◽  
pp. 309-318 ◽  
Author(s):  
Lei Zhu ◽  
Yanman Li ◽  
Neelam Ara ◽  
Jinghua Yang ◽  
Mingfang Zhang
Viruses ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 430 ◽  
Author(s):  
Miroslav Glasa ◽  
Katarína Šoltys ◽  
Lukáš Predajňa ◽  
Nina Sihelská ◽  
Slavomíra Nováková ◽  
...  

In recent years, the accumulated molecular data of Turnip mosaic virus (TuMV) isolates from various hosts originating from different parts of the world considerably helped to understand the genetic complexity and evolutionary history of the virus. In this work, four complete TuMV genomes (HC9, PK1, MS04, MS15) were characterised from naturally infected cultivated and wild-growing Papaver spp., hosts from which only very scarce data were available previously. Phylogenetic analyses showed the affiliation of Slovak Papaver isolates to the world-B and basal-B groups. The PK1 isolate showed a novel intra-lineage recombination pattern, further confirming the important role of recombination in the shaping of TuMV genetic diversity. Biological assays indicated that the intensity of symptoms in experimentally inoculated oilseed poppy are correlated to TuMV accumulation level in leaves. This is the first report of TuMV in poppy plants in Slovakia.


2003 ◽  
Vol 16 (9) ◽  
pp. 777-784 ◽  
Author(s):  
Carol E. Jenner ◽  
Xiaowu Wang ◽  
Kenta Tomimura ◽  
Kazusato Ohshima ◽  
Fernando Ponz ◽  
...  

Two isolates of the potyvirus Turnip mosaic virus (TuMV), UK 1 and CDN 1, differ both in their general symptoms on the susceptible propagation host Brassica juncea and in their ability to infect B. napus lines possessing a variety of dominant resistance genes. The isolate CDN 1 produces a more extreme mosaic in infected brassica leaves than UK 1 and is able to overcome the resistance genes TuRB01, TuRB04, and TuRB05. The resistance gene TuRB03, in the B. napus line 22S, is effective against CDN 1 but not UK 1. The nucleic acid sequences of the UK 1 and CDN 1 isolates were 90% identical. The C-terminal half of the P3 protein was identified as being responsible for the differences in symptoms in B. juncea. A single amino acid in the P3 protein was found to be the avirulence determinant for TuRB03. Previous work already has identified the P3 as an avirulence determinant for TuRB04. Our results increase the understanding of the basis of plant-virus recognition, show the importance of the potyviral P3 gene as a symptom determinant, and provide a role in planta for the poorly understood P3 protein in a normal infection cycle.


2022 ◽  
Vol 12 ◽  
Author(s):  
Lawrence E. Bramham ◽  
Tongtong Wang ◽  
Erin E. Higgins ◽  
Isobel A. P. Parkin ◽  
Guy C. Barker ◽  
...  

Turnip mosaic virus (TuMV) induces disease in susceptible hosts, notably impacting cultivation of important crop species of the Brassica genus. Few effective plant viral disease management strategies exist with the majority of current approaches aiming to mitigate the virus indirectly through control of aphid vector species. Multiple sources of genetic resistance to TuMV have been identified previously, although the majority are strain-specific and have not been exploited commercially. Here, two Brassica juncea lines (TWBJ14 and TWBJ20) with resistance against important TuMV isolates (UK 1, vVIR24, CDN 1, and GBR 6) representing the most prevalent pathotypes of TuMV (1, 3, 4, and 4, respectively) and known to overcome other sources of resistance, have been identified and characterized. Genetic inheritance of both resistances was determined to be based on a recessive two-gene model. Using both single nucleotide polymorphism (SNP) array and genotyping by sequencing (GBS) methods, quantitative trait loci (QTL) analyses were performed using first backcross (BC1) genetic mapping populations segregating for TuMV resistance. Pairs of statistically significant TuMV resistance-associated QTLs with additive interactive effects were identified on chromosomes A03 and A06 for both TWBJ14 and TWBJ20 material. Complementation testing between these B. juncea lines indicated that one resistance-linked locus was shared. Following established resistance gene nomenclature for recessive TuMV resistance genes, these new resistance-associated loci have been termed retr04 (chromosome A06, TWBJ14, and TWBJ20), retr05 (A03, TWBJ14), and retr06 (A03, TWBJ20). Genotyping by sequencing data investigated in parallel to robust SNP array data was highly suboptimal, with informative data not established for key BC1 parental samples. This necessitated careful consideration and the development of new methods for processing compromised data. Using reductive screening of potential markers according to allelic variation and the recombination observed across BC1 samples genotyped, compromised GBS data was rendered functional with near-equivalent QTL outputs to the SNP array data. The reductive screening strategy employed here offers an alternative to methods relying upon imputation or artificial correction of genotypic data and may prove effective for similar biparental QTL mapping studies.


2007 ◽  
Vol 88 (1) ◽  
pp. 298-315 ◽  
Author(s):  
Kazusato Ohshima ◽  
Yasuhiro Tomitaka ◽  
Jeffery T. Wood ◽  
Yoshiteru Minematsu ◽  
Hiromi Kajiyama ◽  
...  

Potyviruses have variable single-stranded RNA genomes and many show clear evidence of recombination. This report studied the distribution of recombination sites in the genomes of 92 isolates of the potyvirus Turnip mosaic virus (TuMV); 42 came from the international gene sequence databases and an additional 50 complete genomic sequences were generated from field samples collected in Europe and Asia. The sequences were examined for evidence of recombination using seven different sequence comparison methods and the exact position of each site was confirmed by sequence composition analysis. Recombination sites were found throughout the genomes, except in the small 6K1 protein gene, and only 24 of the genomes (26 %) showed no evidence of recombination. Statistically significant clusters of recombination sites were found in the P1 gene and in the CI/6K2/VPg gene region. Most recombination sites were bordered by an upstream (5′) region of GC-rich and downstream (3′) region of AU-rich sequence of a similar length. Correlations between the presence and type of recombination site and provenance, host type and phylogenetic relationships are discussed, as is the role of recombination in TuMV evolution.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Rebeca Cuesta ◽  
Carmen Yuste-Calvo ◽  
David Gil-Cartón ◽  
Flora Sánchez ◽  
Fernando Ponz ◽  
...  

Abstract Turnip mosaic virus (TuMV), a potyvirus, is a flexible filamentous plant virus that displays a helical arrangement of coat protein copies (CPs) bound to the ssRNA genome. TuMV is a bona fide representative of the Potyvirus genus, one of most abundant groups of plant viruses, which displays a very wide host range. We have studied by cryoEM the structure of TuMV virions and its viral-like particles (VLPs) to explore the role of the interactions between proteins and RNA in the assembly of the virions. The results show that the CP-RNA interaction is needed for the correct orientation of the CP N-terminal arm, a region that plays as a molecular staple between CP subunits in the fully assembled virion.


2007 ◽  
Vol 58 (1) ◽  
pp. 67 ◽  
Author(s):  
Brenda A. Coutts ◽  
John A. Walsh ◽  
Roger A. C. Jones

Forty-three Australian cultivars or breeding lines of Brassica napus (canola, oilseed rape) and 2 cultivars of Brassica juncea (mustard) were inoculated with infective sap containing isolate WA-Ap of Turnip mosaic virus (TuMV), which belongs to TuMV pathotype 8. The types of reactions obtained were: necrotic spots in inoculated leaves without systemic infection (RN), chlorotic blotches in inoculated leaves without systemic infection (R), and chlorotic blotches in inoculated leaves accompanied by systemic infection that consisted of either necrotic spots (+N) or chlorotic blotches (+). The RN and +N reactions are consistent with those expected in the presence of 4 strain-specific TuMV resistance genes TuRB01 (+N response), TuRB03 (+N response) and TuRB04 with TuRB05 (RN), with + indicating a susceptible response. However, which resistance gene corresponds to the R response is unclear. The RN (TuRB04 with TuRB05) type of response was the commonest. Only one genotype lacked any TuMV resistance, and segregation for more than one different type of resistance response occurred within 22 genotypes and some segregated for resistance and susceptibility. Some genotypes segregated for all 3 types of resistance response found. The reaction of 2 plants of cv. Rivette was atypical as they developed both necrotic spots in inoculated leaves and systemic chlorotic spots. Since breeding for TuMV resistance is not undertaken in Australia, these results indicate frequent but inadvertent crossing with parental lines carrying TuMV resistance. Widespread occurrence of TuMV resistance genes and the possibility that many Australian TuMV isolates may not be well adapted to B. napus may explain the low incidence of this virus found in Australian B. napus crops.


2010 ◽  
Vol 23 (1) ◽  
pp. 39-48 ◽  
Author(s):  
Li-Jun Fu ◽  
Kai Shi ◽  
Min Gu ◽  
Yan-Hong Zhou ◽  
De-Kun Dong ◽  
...  

The role of mitochondrial alternative oxidase (AOX) and the relationship between AOX and nitric oxide (NO) in virus-induced systemic defense to Tobacco mosaic virus (TMV) were investigated in susceptible tomato (Solanum lycopersicum) plants. TMV inoculation to the lower leaves induced a rapid NO synthesis and AOX activation in upper uninoculated leaves as early as 0.5 day postinoculation. Application of exogenous potassium cyanide (KCN, a cytochrome pathway inhibitor) at nonlethal concentrations and NO donor diethylamine NONOate (DEA/NO) to the upper uninoculated leaves greatly induced accumulation of AOX transcript, reduced TMV viral RNA accumulation, and increased the leaf photochemical quantum yield at photosystem II. Pretreatment with NO scavenger almost completely blocked TMV-induced AOX induction and substantially increased TMV susceptibility. Salicylhydroxamic acid (SHAM, an AOX inhibitor) pretreatment reduced the DEA/NO-induced cyanide-resistant respiration and partially compromised induced resistance to TMV. Conversely, KCN and SHAM pretreatment had very little effect on generation of NO, and pretreatment with NO scavenger did not affect KCN-induced AOX induction and TMV resistance. These results suggest that TMV-induced NO generation acts upstream and mediates AOX induction which, in turn, induces mitochondrial alternative electron transport and triggers systemic basal defense against the viral pathogen.


Plant Disease ◽  
2017 ◽  
Vol 101 (5) ◽  
pp. 674-683 ◽  
Author(s):  
Marine G. L. Guerret ◽  
Eviness P. Nyalugwe ◽  
Solomon Maina ◽  
Martin J. Barbetti ◽  
Joop A. G. van Leur ◽  
...  

A new resistance-breaking strain of Turnip mosaic virus (TuMV) overcomes TuMV resistance genes that currently suppress spread of this virus in Brassica napus crops in the Liverpool Plains region of eastern Australia. Isolates 12.1 and 12.5 of this strain and three other isolates in TuMV pathotypes 1 (NSW-2), 7 (NSW-1), and 8 (WA-Ap1) were inoculated to plants of 19 B. napus cultivars and one breeding line. All plants of these cultivars and the breeding line proved susceptible to 12.1 and 12.5 but developed only resistance phenotypes with WA-Ap1 or mostly resistance phenotypes with NSW-1 and NSW-2. Five different TuMV resistance phenotypes occurred either alone or segregating in different combinations. When these five isolates were inoculated to plants of nine other crop or wild Brassicaceae spp. and four indicator hosts in other families, 12.1 and 12.5 resembled the other three in inducing TuMV resistance phenotypes in some Brassicaceae spp. but not others, and by inducing extreme resistance phenotypes in all inoculated plants of B. oleracea var. botrytis and Raphanus sativus. Therefore, the overall resistance-breaking properties of 12.1 and 12.5 were restricted to B. napus. When isolates 12.1, 12.5, and WA-Ap1 and additional Australian isolate WA-EP1 were sequenced and complete genomes of each compared, 12.1 and 12.5 grouped separately from the other 2 and from all 23 Australian isolates with complete genomes sequenced previously. In addition, there was evidence for at least six separate TuMV introductions to Australia. Spread of this B. napus resistance-breaking strain poses a significant threat to the B. napus oilseed industry. Breeding B. napus cultivars with resistance to this strain constitutes a critical priority for B. napus breeding programs in Australia and elsewhere.


Sign in / Sign up

Export Citation Format

Share Document