scholarly journals A predictive processing theory of motivation

Synthese ◽  
2019 ◽  
Author(s):  
Alex James Miller Tate

Abstract In this paper I propose minimal criteria for a successful theory of the mechanisms of motivation (i.e. how motivational mental states perform their characteristic function), and argue that extant philosophical accounts fail to meet them. Further, I argue that a predictive processing (PP) framework gives us the theoretical power to meet these criteria, and thus ought to be preferred over existing theories. The argument proceeds as follows—motivational mental states are generally understood as mental states with the power to initiate, guide, and control action, though few existing theories of motivation explicitly detail how they are meant to explain these functions. I survey two contemporary theories of motivational mental states, due to Wayne Wu and Bence Nanay, and argue that they fail to satisfactorily explain one or more of these functions. Nevertheless, I argue that together, they are capable of giving a strong account of the control function, which competing theories ought to preserve (all else being equal). I then go on to argue that what I call the ‘predictive theory’ of motivational mental states, which makes use of the notion of active inference, is able to explain all three of the key functions and preserves the central insights of Wu and Nanay on control. It thus represents a significant step forward in the contemporary debate.

Author(s):  
Jan Pöppel ◽  
Sebastian Kahl ◽  
Stefan Kopp

AbstractWorking together on complex collaborative tasks requires agents to coordinate their actions. Doing this explicitly or completely prior to the actual interaction is not always possible nor sufficient. Agents also need to continuously understand the current actions of others and quickly adapt their own behavior appropriately. Here we investigate how efficient, automatic coordination processes at the level of mental states (intentions, goals), which we call belief resonance, can lead to collaborative situated problem-solving. We present a model of hierarchical active inference for collaborative agents (HAICA). It combines efficient Bayesian Theory of Mind processes with a perception–action system based on predictive processing and active inference. Belief resonance is realized by letting the inferred mental states of one agent influence another agent’s predictive beliefs about its own goals and intentions. This way, the inferred mental states influence the agent’s own task behavior without explicit collaborative reasoning. We implement and evaluate this model in the Overcooked domain, in which two agents with varying degrees of belief resonance team up to fulfill meal orders. Our results demonstrate that agents based on HAICA achieve a team performance comparable to recent state-of-the-art approaches, while incurring much lower computational costs. We also show that belief resonance is especially beneficial in settings where the agents have asymmetric knowledge about the environment. The results indicate that belief resonance and active inference allow for quick and efficient agent coordination and thus can serve as a building block for collaborative cognitive agents.


Author(s):  
Lauren Swiney

Over the last thirty years the comparator hypothesis has emerged as a prominent account of inner speech pathology. This chapter discusses a number of cognitive accounts broadly derived from this approach, highlighting the existence of two importantly distinct notions of inner speech in the literature; one as a prediction in the absence of sensory input, the other as an act with sensory consequences that are themselves predicted. Under earlier frameworks in which inner speech is described in the context of classic models of motor control, I argue that these two notions may be compatible, providing two routes to inner speech pathology. Under more recent accounts grounded in the architecture of Bayesian predictive processing, I argue that “active inference” approaches to action generation pose serious challenges to the plausibility of the latter notion of inner speech, while providing the former notion with rich explanatory possibilities for inner speech pathology.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 806
Author(s):  
Stephen Fox

Psychomotor experience can be based on what people predict they will experience, rather than on sensory inputs. It has been argued that disconnects between human experience and sensory inputs can be addressed better through further development of predictive processing theory. In this paper, the scope of predictive processing theory is extended through three developments. First, by going beyond previous studies that have encompassed embodied cognition but have not addressed some fundamental aspects of psychomotor functioning. Second, by proposing a scientific basis for explaining predictive processing that spans objective neuroscience and subjective experience. Third, by providing an explanation of predictive processing that can be incorporated into the planning and operation of systems involving robots and other new technologies. This is necessary because such systems are becoming increasingly common and move us farther away from the hunter-gatherer lifestyles within which our psychomotor functioning evolved. For example, beliefs that workplace robots are threatening can generate anxiety, while wearing hardware, such as augmented reality headsets and exoskeletons, can impede the natural functioning of psychomotor systems. The primary contribution of the paper is the introduction of a new formulation of hierarchical predictive processing that is focused on psychomotor functioning.


2019 ◽  
Author(s):  
Beren Millidge

Initial and preliminary implementations of predictive processing and active inference models are presented. These include the baseline hierarchical predictive coding models of (Friston 2003, 2005), and dynamical predictive coding models using generalised coordinates (Friston 2008, 2010, Buckley 2017). Additionally, we re-implement and experiment with the active inference thermostat presented in (Buckley 2017) and also implement an active inference agent with a hierarchical predictive coding perceptual model on the more challenging cart-pole task from OpanAI gym. We discuss the initial performance, capabilities, and limitations of these models in their preliminary stages and consider how they might be further scaled up to tackle more challenging tasks.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Tomáš Marvan ◽  
Michal Polák ◽  
Talis Bachmann ◽  
William A Phillips

Abstract We present a theoretical view of the cellular foundations for network-level processes involved in producing our conscious experience. Inputs to apical synapses in layer 1 of a large subset of neocortical cells are summed at an integration zone near the top of their apical trunk. These inputs come from diverse sources and provide a context within which the transmission of information abstracted from sensory input to their basal and perisomatic synapses can be amplified when relevant. We argue that apical amplification enables conscious perceptual experience and makes it more flexible, and thus more adaptive, by being sensitive to context. Apical amplification provides a possible mechanism for recurrent processing theory that avoids strong loops. It makes the broadcasting hypothesized by global neuronal workspace theories feasible while preserving the distinct contributions of the individual cells receiving the broadcast. It also provides mechanisms that contribute to the holistic aspects of integrated information theory. As apical amplification is highly dependent on cholinergic, aminergic, and other neuromodulators, it relates the specific contents of conscious experience to global mental states and to fluctuations in arousal when awake. We conclude that apical dendrites provide a cellular mechanism for the context-sensitive selective amplification that is a cardinal prerequisite of conscious perception.


Problemos ◽  
2019 ◽  
Vol 96 ◽  
pp. 148-159 ◽  
Author(s):  
Paulius Rimkevičius

The interpretive-sensory access (ISA) theory of self-knowledge claims that one knows one’s own mind by turning one’s capacity to know other minds onto oneself. Previously, researchers mostly debated whether the theory receives the most support from the results of empirical research. They have given much less attention to the question whether the theory is the simplest of the available alternatives. I argue that the question of simplicity should be considered in light of the well-established theories surrounding the ISA theory. I claim that the ISA theory then proves to be the simplest. I reply to objections to this claim related to recent developments in this area of research: the emergence of a unified transparency theory of self-knowledge and the relative establishment of the predictive processing theory.


2020 ◽  
Author(s):  
Adam Safron

Integrated World Modeling Theory (IWMT) is a synthetic model that attempts to unify theories of consciousness within the Free Energy Principle and Active Inference framework, with particular emphasis on Integrated Information Theory (IIT) and Global Neuronal Workspace Theory (GNWT). IWMT further suggests predictive processing in sensory hierarchies may be well-modeled as (folded, sparse, partially disentangled) variational autoencoders, with beliefs discretely-updated via the formation of synchronous complexes—as self-organizing harmonic modes (SOHMs)—potentially entailing maximal a posteriori (MAP) estimation via turbo coding. In this account, alpha-synchronized SOHMs across posterior cortices may constitute the kinds of maximal complexes described by IIT, as well as samples (or MAP estimates) from multimodal shared latent space, organized according to egocentric reference frames, entailing phenomenal consciousness as mid-level perceptual inference. When these posterior SOHMs couple with frontal complexes, this may enable various forms of conscious access as a kind of mental act(ive inference), affording higher order cognition/control, including the kinds of attentional/intentional processing and reportability described by GNWT. Across this autoencoding heterarchy, intermediate-level beliefs may be organized into spatiotemporal trajectories by the entorhinal/hippocampal system, so affording episodic memory, counterfactual imaginings, and planning.


2019 ◽  
Author(s):  
Beren Millidge

Fixational eye movements are ubiquitous and have a large impact on visual perception. Although their physical characteristics and, to some extent, neural underpinnings are well documented, their function, with the exception of preventing visual fading, remains poorly understood. In this paper, we propose that the visual system might utilize the relatively large number of similar slightly jittered images produced by fixational eye movements to help learn robust and spatially invariant representations as a form of neural data augmentation. Additionally, we form a link between effects such as retinal stabilization and predictive processing theory, and argue that they may be best explained under such a paradigm.


2019 ◽  
Vol 28 (4) ◽  
pp. 225-239 ◽  
Author(s):  
Maxwell JD Ramstead ◽  
Michael D Kirchhoff ◽  
Karl J Friston

The aim of this article is to clarify how best to interpret some of the central constructs that underwrite the free-energy principle (FEP) – and its corollary, active inference – in theoretical neuroscience and biology: namely, the role that generative models and variational densities play in this theory. We argue that these constructs have been systematically misrepresented in the literature, because of the conflation between the FEP and active inference, on the one hand, and distinct (albeit closely related) Bayesian formulations, centred on the brain – variously known as predictive processing, predictive coding or the prediction error minimisation framework. More specifically, we examine two contrasting interpretations of these models: a structural representationalist interpretation and an enactive interpretation. We argue that the structural representationalist interpretation of generative and recognition models does not do justice to the role that these constructs play in active inference under the FEP. We propose an enactive interpretation of active inference – what might be called enactive inference. In active inference under the FEP, the generative and recognition models are best cast as realising inference and control – the self-organising, belief-guided selection of action policies – and do not have the properties ascribed by structural representationalists.


Synthese ◽  
2021 ◽  
Author(s):  
Paweł Gładziejewski

AbstractIn this paper, I use the predictive processing (PP) theory of perception to tackle the question of how perceptual states can be rationally involved in cognition by justifying other mental states. I put forward two claims regarding the epistemological implications of PP. First, perceptual states can confer justification on other mental states because the perceptual states are themselves rationally acquired. Second, despite being inferentially justified rather than epistemically basic, perceptual states can still be epistemically responsive to the mind-independent world. My main goal is to elucidate the epistemology of perception already implicit in PP. But I also hope to show how it is possible to peacefully combine central tenets of foundationalist and coherentist accounts of the rational powers of perception while avoiding the well-recognized pitfalls of either.


Sign in / Sign up

Export Citation Format

Share Document