scholarly journals Accumulation of biologically active phenolic acids in agitated shoot cultures of three Hypericum perforatum cultivars: ‘Elixir’, ‘Helos’ and ‘Topas’

2015 ◽  
Vol 123 (2) ◽  
pp. 273-281 ◽  
Author(s):  
Inga Kwiecień ◽  
Aleksandra Szydłowska ◽  
Beata Kawka ◽  
Ludger Beerhues ◽  
Halina Ekiert
2021 ◽  
Vol 105 (3) ◽  
pp. 1215-1226
Author(s):  
Wojciech Makowski ◽  
Aleksandra Królicka ◽  
Anna Nowicka ◽  
Jana Zwyrtková ◽  
Barbara Tokarz ◽  
...  

Abstract The Venus flytrap (Dionaea muscipula J. Ellis) is a carnivorous plant able to synthesize large amounts of phenolic compounds, such as phenylpropanoids, flavonoids, phenolic acids, and 1,4-naphtoquinones. In this study, the first genetic transformation of D. muscipula tissues is presented. Two wild-type Rhizobium rhizogenes strains (LBA 9402 and ATCC 15834) were suitable vector organisms in the transformation process. Transformation led to the formation of teratoma (transformed shoot) cultures with the bacterial rolB gene incorporated into the plant genome in a single copy. Using high-pressure liquid chromatography, we demonstrated that transgenic plants were characterized by an increased quantity of phenolic compounds, including 1,4-naphtoquinone derivative, plumbagin (up to 106.63 mg × g−1 DW), and phenolic acids (including salicylic, caffeic, and ellagic acid), in comparison to non-transformed plants. Moreover, Rhizobium-mediated transformation highly increased the bactericidal properties of teratoma-derived extracts. The antibacterial properties of transformed plants were increased up to 33% against Staphylococcus aureus, Enterococcus faecalis, and Escherichia coli and up to 7% against Pseudomonas aeruginosa. For the first time, we prove the possibility of D. muscipula transformation. Moreover, we propose that transformation may be a valuable tool for enhancing secondary metabolite production in D. muscipula tissue and to increase bactericidal properties against human antibiotic-resistant bacteria. Key points • Rhizobium-mediated transformation created Dionaea muscipula teratomas. • Transformed plants had highly increased synthesis of phenolic compounds. • The MBC value was connected with plumbagin and phenolic acid concentrations.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Sonja Gadzovska Simic ◽  
Oliver Tusevski ◽  
Stéphane Maury ◽  
Alain Delaunay ◽  
Claude Joseph ◽  
...  

The effects of polysaccharide elicitors such as chitin, pectin, and dextran on the production of phenylpropanoids (phenolics and flavonoids) and naphtodianthrones (hypericin and pseudohypericin) inHypericum perforatumshoot cultures were studied. Nonenzymatic antioxidant properties (NEAOP) and peroxidase (POD) activity were also observed in shoot extracts. The activities of phenylalanine ammonia lyase (PAL) and chalcone-flavanone isomerase (CHFI) were monitored to estimate channeling in phenylpropanoid/flavonoid pathways of elicited shoot cultures. A significant suppression of the production of total phenolics and flavonoids was observed in elicited shoots from day 14 to day 21 of postelicitation. This inhibition of phenylpropanoid production was probably due to the decrease in CHFI activity in elicited shoots. Pectin and dextran promoted accumulation of naphtodianthrones, particularly pseudohypericin, within 21 days of postelicitation. The enhanced accumulation of naphtodianthrones was positively correlated with an increase of PAL activity in elicited shoots. All tested elicitors induced NEAOP at day 7, while chitin and pectin showed increase in POD activity within the entire period of postelicitation. The POD activity was in significantly positive correlation with flavonoid and hypericin contents, suggesting a strong perturbation of the cell redox system and activation of defense responses in polysaccharide-elicitedH. perforatumshoot cultures.


2020 ◽  
Vol 142 (2) ◽  
pp. 379-399
Author(s):  
Agnieszka Szopa ◽  
Paweł Kubica ◽  
Łukasz Komsta ◽  
Aleksandra Walkowicz-Bożek ◽  
Halina Ekiert

Abstract Agitated shoot cultures of two aronias, Aronia melanocarpa (Michx.) Elliott and Aronia arbutifolia (L.) Pers., were maintained on Murashige & Skoog medium (1 mg/l BA and 1 mg/l NAA), both with and without the addition of various biosynthetic precursors of phenolic acids and depsides (phenylalanine, cinnamic acid, benzoic acid and caffeic acid). Each substance was added in 5 concentrations (0.1–10 mmol/l), each concentration at two time points (at the beginning and on the 10th day of cultures). Twenty-four phenolic acids were determined in methanolic extracts of the biomasses collected after 20 days of growth cycles by means of HPLC method with DAD detection. The presence of seven compounds was confirmed in all the extracts—five depsides (neochlorogenic, chlorogenic, cryptochlorogenic, isochlorogenic and rosmarinic acids), and syringic and caffeic acids. The main metabolites in A. melanocarpa shoot extracts were isochlorogenic, chlorogenic and neochlorogenic acids (max. 249.88, 450.35, 192.16 mg/100 g DW). The main metabolites in A. arbutifolia shoot extracts were: chlorogenic, isochlorogenic and cryptochlorogenic acids (max. 361.60, 224.5, 526.2 mg/100 g DW). The largest total amounts of the compounds were confirmed in the cultures of both aronias after the addition of cinnamic acid (989.79 and 661.77 mg/100 g DW, respectively) and caffeic acid (854.99 and 1098.46 mg/100 g DW, respectively) at concentrations of 5 mmol/l on 10th day of growth cycles. These maximum amounts were 3.41, 3.42, 2.95 and 5.67 times higher, respectively, than in the control cultures. This is the first report documenting the high production of depsides in shoot cultures of black and red aronias after feeding with their biosynthetic precursors.


Plants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 298 ◽  
Author(s):  
Jasmine Speranza ◽  
Natalizia Miceli ◽  
Maria Fernanda Taviano ◽  
Salvatore Ragusa ◽  
Inga Kwiecień ◽  
...  

Isatis tinctoria L. (Brassicaceae), which is commonly known as woad, is a species with an ancient and well-documented history as an indigo dye and medicinal plant. Currently, I. tinctoria is utilized more often as medicinal remedy and also as a cosmetic ingredient. In 2011, I. tinctoria root was accepted in the official European phytotherapy by introducing its monograph in the European Pharmacopoeia. The biological properties of raw material have been known from Traditional Chinese Medicine (TCM). Over recent decades, I. tinctoria has been investigated both from a phytochemical and a biological point of view. The modern in vitro and in vivo scientific studies proved anti-inflammatory, anti-tumour, antimicrobial, antiviral, analgesic, and antioxidant activities. The phytochemical composition of I. tinctoria has been thoroughly investigated and the plant was proven to contain many valuable biologically active compounds, including several alkaloids, among which tryptanthrin, indirubin, indolinone, phenolic compounds, and polysaccharides as well as glucosinolates, carotenoids, volatile constituents, and fatty acids. This article provides a general botanical and ethnobotanical overview that summarizes the up-to-date knowledge on the phytochemistry and biological properties of this valuable plant in order to support its therapeutic potential. Moreover, the biotechnological studies on I. tinctoria, which mainly focused on hairy root cultures for the enhanced production of flavonoids and alkaloids as well as on the establishment of shoot cultures and micropropagation protocols, were reviewed. They provide input for future research prospects.


2019 ◽  
Vol 139 (1) ◽  
pp. 167-175 ◽  
Author(s):  
Małgorzata Kikowska ◽  
Barbara Thiem ◽  
Agnieszka Szopa ◽  
Marta Klimek-Szczykutowicz ◽  
Monika Rewers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document